IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v88y2020ics0140988320300530.html
   My bibliography  Save this article

Long-term transmission rights and dynamic efficiency

Author

Listed:
  • Petropoulos, Georgios
  • Willems, Bert

Abstract

We compare market designs for access regulation of a bottleneck transmission line, and study their impact on investment decisions by an incumbent firm with an existing dirty technology and entrant with an uncertain future low-carbon technology. Nodal pricing, which allocates network access on a short-term competitive basis, distorts investment decisions, as the incumbent preempts the entrant by investing early. Long-term tradable transmission rights restore investment efficiency: the incumbent's investment timing becomes socially optimal. This is the case for financial and physical transmission rights, but it requires the existence of a secondary market for transmission rights.

Suggested Citation

  • Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:eneeco:v:88:y:2020:i:c:s0140988320300530
    DOI: 10.1016/j.eneco.2020.104714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320300530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dijk, Justin & Willems, Bert, 2011. "The effect of counter-trading on competition in electricity markets," Energy Policy, Elsevier, vol. 39(3), pages 1764-1773, March.
    2. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    3. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    4. Steven R. Grenadier, 2002. "Option Exercise Games: An Application to the Equilibrium Investment Strategies of Firms," Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 691-721.
    5. Robert Wilson, 2002. "Architecture of Power Markets," Econometrica, Econometric Society, vol. 70(4), pages 1299-1340, July.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    8. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    9. Bastian Henze & Charles Noussair & Bert Willems, 2012. "Regulation of network infrastructure investments: an experimental evaluation," Journal of Regulatory Economics, Springer, vol. 42(1), pages 1-38, August.
    10. Natalia Fabra & Nils-Henrik M. von der Fehr & David Harbord, 2006. "Designing Electricity Auctions," RAND Journal of Economics, The RAND Corporation, vol. 37(1), pages 23-46, Spring.
    11. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    13. Vincent Rious & Yannick Perez & Philippe Dessante, 2008. "Is combination of nodal pricing and average participation tariff the best solution to coordinate the location of power plants with lumpy transmission investments?," Post-Print hal-00323878, HAL.
    14. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    15. Rohan Pitchford, 2003. "Coming to the Nuisance: An Economic Analysis from an Incomplete Contracts Perspective," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 19(2), pages 491-516, October.
    16. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    17. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    18. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    19. Bert Willems, 2002. "Modeling Cournot Competition in an Electricity Market with Transmission Constraints," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 95-125.
    20. Aghion, Philippe & Bolton, Patrick, 1987. "Contracts as a Barrier to Entry," American Economic Review, American Economic Association, vol. 77(3), pages 388-401, June.
    21. Fischel, William A. & Shapiro, Perry, 1989. "A constitutional choice model of compensation for takings," International Review of Law and Economics, Elsevier, vol. 9(2), pages 115-128, December.
    22. Richard Gilbert & Karsten Neuhoff & David Newbery, 2004. "Allocating Transmission to Mitigate Market Power in Electricity Markets," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 691-709, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhongqun & Zheng, Ruijin, 2022. "Research on the impact of financial transmission rights on transmission expansion: A system dynamics model," Energy, Elsevier, vol. 239(PA).
    2. Piotr F. Borowski, 2020. "Zonal and Nodal Models of Energy Market in European Union," Energies, MDPI, vol. 13(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Petropoulos & Bert Willems, 2016. "Providing efficient network access to green power generators- A long-term property rights perspective," Working Papers 17317, Bruegel.
    2. Dijk, Justin & Willems, Bert, 2011. "The effect of counter-trading on competition in electricity markets," Energy Policy, Elsevier, vol. 39(3), pages 1764-1773, March.
    3. Holmberg, P. & Lazarczyk, E., 2012. "Congestion management in electricity networks: Nodal, zonal and discriminatory pricing," Cambridge Working Papers in Economics 1219, Faculty of Economics, University of Cambridge.
    4. Creti, Anna & Fumagalli, Eileen & Fumagalli, Elena, 2010. "Integration of electricity markets in Europe: Relevant issues for Italy," Energy Policy, Elsevier, vol. 38(11), pages 6966-6976, November.
    5. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    6. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    7. Blázquez De Paz, Mario, 2017. "Production or Transmission Investments? A Comparative Analysis," Working Paper Series 1158, Research Institute of Industrial Economics.
    8. Blázquez de Paz, Mario, 2019. "Redispatch in Zonal Pricing Electricity Markets," Working Paper Series 1278, Research Institute of Industrial Economics.
    9. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.
    10. Pär Holmberg & Andy Philpott, 2014. "Supply function equilibria in transportation networks," Cambridge Working Papers in Economics 1421, Faculty of Economics, University of Cambridge.
    11. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    12. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2014. "Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 460, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    13. Holmberg, Pär & Philpott, Andrew, 2012. "Supply Function Equilibria in Networks with Transport Constraints," Working Paper Series 945, Research Institute of Industrial Economics, revised 10 Aug 2015.
    14. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    15. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    16. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    17. Leuthold, Florian & Jeske, Till & Weigt, Hannes & von Hirschhausen, Christian, 2009. "When the Wind Blows Over Europe: A Simulation Analysis and the Impact of Grid Extensions," MPRA Paper 65655, University Library of Munich, Germany.
    18. Grimm, Veronika & Martin, Alexander & Weibenzahl, Martin & Zoettl, Gregor, 2014. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," FAU Discussion Papers in Economics 04/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Helman, Udi, 2006. "Market power monitoring and mitigation in the US wholesale power markets," Energy, Elsevier, vol. 31(6), pages 877-904.
    20. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.

    More about this item

    Keywords

    Network access; Congestion management; Renewable energy sources; Power markets;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:88:y:2020:i:c:s0140988320300530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.