IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10315-w.html
   My bibliography  Save this article

A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels

Author

Listed:
  • Hannes Wallimann

    (Lucerne University of Applied Sciences and Arts
    University of Fribourg)

  • David Imhof

    (University of Fribourg
    Swiss Competition Commission
    UniDistance, Faculté d’économie)

  • Martin Huber

    (University of Fribourg)

Abstract

We propose a detection method for flagging bid-rigging cartels, particularly useful when cartels are incomplete. Our approach combines screens, i.e., statistics derived from the distribution of bids in a tender, with machine learning to predict the probability of collusion. As a methodological innovation, we calculate such screens for all possible subgroups of three or four bids within a tender and use summary statistics like the mean, median, maximum, and minimum of each screen as predictors in the machine learning algorithm. This approach tackles the issue that competitive bids in incomplete cartels distort the statistical signals produced by bid rigging and it outperforms previously suggested methods in applications to incomplete cartels based on empirical data from Switzerland.

Suggested Citation

  • Hannes Wallimann & David Imhof & Martin Huber, 2023. "A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10315-w
    DOI: 10.1007/s10614-022-10315-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10315-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10315-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai Hüschelrath & Tobias Veith, 2014. "Cartel Detection in Procurement Markets," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 35(6), pages 404-422, September.
    2. Ken Hendricks & Robert Porter & Guofu Tan, 2008. "Bidding rings and the winner's curse," RAND Journal of Economics, RAND Corporation, vol. 39(4), pages 1018-1041, December.
    3. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "hdm: High-Dimensional Metrics," CeMMAP working papers 37/16, Institute for Fiscal Studies.
    4. Cai, Wei & Mohammaditab, Rasoul & Fathi, Gholamreza & Wakil, Karzan & Ebadi, Abdol Ghaffar & Ghadimi, Noradin, 2019. "Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach," Renewable Energy, Elsevier, vol. 143(C), pages 1-8.
    5. Mats A. Bergman & Johan Lundberg & Sofia Lundberg & Johan Y. Stake, 2020. "Interactions Across Firms and Bid Rigging," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 107-130, February.
    6. Francesco Decarolis & Maris Goldmanis & Antonio Penta, 2020. "Marketing Agencies and Collusive Bidding in Online Ad Auctions," Management Science, INFORMS, vol. 66(10), pages 4433-4454, October.
    7. Carsten J. Crede, 2019. "A Structural Break Cartel Screen for Dating and Detecting Collusion," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(3), pages 543-574, May.
    8. Abrantes-Metz, Rosa M. & Froeb, Luke M. & Geweke, John & Taylor, Christopher T., 2006. "A variance screen for collusion," International Journal of Industrial Organization, Elsevier, vol. 24(3), pages 467-486, May.
    9. Robert H. Porter & J. Douglas Zona, 1999. "Ohio School Milk Markets: An Analysis of Bidding," RAND Journal of Economics, The RAND Corporation, vol. 30(2), pages 263-288, Summer.
    10. Sylvain Chassang & Kei Kawai & Jun Nakabayashi & Juan Ortner, 2022. "Robust Screens for Noncompetitive Bidding in Procurement Auctions," Econometrica, Econometric Society, vol. 90(1), pages 315-346, January.
    11. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    12. Aryal, Gaurab & Gabrielli, Maria F., 2013. "Testing for collusion in asymmetric first-price auctions," International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 26-35.
    13. Iwan Bos & Joseph E. Harrington, Jr, 2010. "Endogenous cartel formation with heterogeneous firms," RAND Journal of Economics, RAND Corporation, vol. 41(1), pages 92-117, March.
    14. David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
    15. Rieko Ishii, 2014. "Bid Roundness Under Collusion in Japanese Procurement Auctions," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(3), pages 241-254, May.
    16. Patrick Bajari & Lixin Ye, 2003. "Deciding Between Competition and Collusion," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 971-989, November.
    17. Juan Jiménez & Jordi Perdiguero, 2012. "Does Rigidity of Prices Hide Collusion?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 223-248, November.
    18. David Imhof & Yavuz Karagök & Samuel Rutz, 2018. "Screening For Bid Rigging—Does It Work?," Journal of Competition Law and Economics, Oxford University Press, vol. 14(2), pages 235-261.
    19. Martin Huber & David Imhof & Rieko Ishii, 2022. "Transnational machine learning with screens for flagging bid‐rigging cartels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
    20. Timothy G. Conley & Francesco Decarolis, 2016. "Detecting Bidders Groups in Collusive Auctions," American Economic Journal: Microeconomics, American Economic Association, vol. 8(2), pages 1-38, May.
    21. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    22. Feinstein, Jonathan S & Block, Michael K & Nold, Frederick C, 1985. "Asymmetric Information and Collusive Behavior in Auction Markets," American Economic Review, American Economic Association, vol. 75(3), pages 441-460, June.
    23. Porter, Robert H & Zona, J Douglas, 1993. "Detection of Bid Rigging in Procurement Auctions," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 518-538, June.
    24. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    25. John Asker, 2010. "A Study of the Internal Organization of a Bidding Cartel," American Economic Review, American Economic Association, vol. 100(3), pages 724-762, June.
    26. Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
    27. Robert Clark & Decio Coviello & Jean-Fran�ois Gauthier & Art Shneyerov, 2018. "Bid Rigging and Entry Deterrence in Public Procurement: Evidence from an Investigation into Collusion and Corruption in Quebec," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(3), pages 301-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Marty & Thierry Warin, 2023. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," CIRANO Working Papers 2023s-26, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
    2. Wallimann, Hannes & Imhof, David & Huber, Martin, 2020. "A Machine Learning Approach for Flagging Incomplete Bid-rigging Cartels," FSES Working Papers 513, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Silveira, Douglas & de Moraes, Lucas B. & Fiuza, Eduardo P.S. & Cajueiro, Daniel O., 2023. "Who are you? Cartel detection using unlabeled data," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    4. Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
    5. Martin Huber & David Imhof & Rieko Ishii, 2022. "Transnational machine learning with screens for flagging bid‐rigging cartels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1074-1114, July.
    6. Huber, Martin & Imhof, David, 2019. "Machine learning with screens for detecting bid-rigging cartels," International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
    7. Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
    8. Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," ZEW Discussion Papers 20-052, ZEW - Leibniz Centre for European Economic Research.
    9. David Imhof & Hannes Wallimann, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," Papers 2105.00337, arXiv.org.
    10. Silveira, Douglas & Vasconcelos, Silvinha & Resende, Marcelo & Cajueiro, Daniel O., 2022. "Won’t Get Fooled Again: A supervised machine learning approach for screening gasoline cartels," Energy Economics, Elsevier, vol. 105(C).
    11. Garcia Pires, Armando J. & Skjeret, Frode, 2023. "Screening for partial collusion in retail electricity markets," Energy Economics, Elsevier, vol. 117(C).
    12. Johannes Wachs & J'anos Kert'esz, 2019. "A network approach to cartel detection in public auction markets," Papers 1906.08667, arXiv.org.
    13. David Imhof & Yavuz Karagök & SAMUEL RUTZ, 2017. "Screening for Bid-rigging. Does it Work?," Working Papers 2017-09, CRESE.
    14. Imhof, David, 2017. "Simple Statistical Screens to Detect Bid Rigging," FSES Working Papers 484, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Huang, Yangguang, 2019. "An empirical study of scoring auctions and quality manipulation corruption," European Economic Review, Elsevier, vol. 120(C).
    16. de Leverano, Adriano, 2019. "Collusion through market sharing agreements: Evidence from Quebec's road paving market," ZEW Discussion Papers 19-053, ZEW - Leibniz Centre for European Economic Research.
    17. Robert Clark & Ignatius Horstmann & Jean-François Houde, 2021. "Hub and Spoke Cartels: Theory and Evidence from the Grocery Industry," NBER Working Papers 29253, National Bureau of Economic Research, Inc.
    18. Kurdoglu, Berkay & Yucel, Eray, 2022. "A Cointegration-based cartel screen for detecting collusion," MPRA Paper 113888, University Library of Munich, Germany.
    19. Huang, Yangguang & Xia, Jijun, 2019. "Procurement auctions under quality manipulation corruption," European Economic Review, Elsevier, vol. 111(C), pages 380-399.
    20. Imhof, David & Karagök, Yavuz & Rutz, Samuel, 2016. "Screening for bid-rigging - does it work?," FSES Working Papers 468, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.

    More about this item

    Keywords

    Bid rigging detection; Screening methods; Descriptive statistics; Machine learning; Random forest; Lasso; Ensemble methods;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • K40 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - General
    • L40 - Industrial Organization - - Antitrust Issues and Policies - - - General
    • L41 - Industrial Organization - - Antitrust Issues and Policies - - - Monopolization; Horizontal Anticompetitive Practices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10315-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.