IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10304-z.html
   My bibliography  Save this article

Calibration of Storage Model by Multi-Stage Statistical and Machine Learning Methods

Author

Listed:
  • Nader Karimi

    (Amirkabir University of Technology)

  • Hirbod Assa

    (Kent Business School)

  • Erfan Salavati

    (Amirkabir University of Technology)

  • Hojatollah Adibi

    (Amirkabir University of Technology)

Abstract

Calibration of multidimensional economic problems proven to be difficult, as there is a high risk of problem miss-identification. In this paper we propose a multi-stage calibration method to estimate the six parameters of a commodity market price model that includes storage. We assume that the commodity prices are derived from the optimal commodity storage time when the demand process follows a mean-reverting log-Ornstein–Uhlenbeck process. Using two alternative value functions, first we propose a two-stage method to maximize the likelihood functions obtained by Milstein method. Then by considering a regularized likelihood functions we propose a multi-stage method to calibrate the parameters of our problem. After we realize our method is perfectly performing on the simulated data, we encounter it to actual data and calibrate the parameters. We observe that our multi-stage calibration method is robust and that the storage model outperforms the non-storage model.

Suggested Citation

  • Nader Karimi & Hirbod Assa & Erfan Salavati & Hojatollah Adibi, 2023. "Calibration of Storage Model by Multi-Stage Statistical and Machine Learning Methods," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1437-1455, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10304-z
    DOI: 10.1007/s10614-022-10304-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10304-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10304-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bessembinder, Hendrik, et al, 1995. "Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure," Journal of Finance, American Finance Association, vol. 50(1), pages 361-375, March.
    2. David M Arseneau & Sylvain Leduc, 2013. "Commodity Price Movements in a General Equilibrium Model of Storage," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 61(1), pages 199-224, April.
    3. Serena Ng & Francisco J. Ruge-Murcia, 2000. "Explaining the Persistence of Commodity Prices," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 149-171, October.
    4. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(1), pages 1-23.
    5. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    6. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Response to comment on 'Thou shalt buy and hold'," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 761-762.
    7. Casassus, Jaime & Collin-Dufresne, Pierre & Routledge, Bryan R., 2018. "Equilibrium commodity prices with irreversible investment and non-linear technologies," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 128-147.
    8. Mr. Norbert Funke & Weifeng Wu & Yanliang Miao, 2011. "Reviving the Competitive Storage Model: A Holistic Approach to Food Commodity Prices," IMF Working Papers 2011/064, International Monetary Fund.
    9. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    10. Robert L. Gustafson, 1958. "Implications of Recent Research on Optimal Storage Rules," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 40(2), pages 290-300.
    11. Hirbod Assa, 2015. "A financial engineering approach to pricing agricultural insurances," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 75(1), pages 63-76, May.
    12. Hirbod Assa, 2015. "A financial engineering approach to pricing agricultural insurances," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 75(1), pages 63-76, May.
    13. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    14. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Thou shalt buy and hold," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 765-776.
    15. Cafiero, Carlo & Bobenrieth H., Eugenio S.A. & Bobenrieth H., Juan R.A. & Wright, Brian D., 2011. "The empirical relevance of the competitive storage model," Journal of Econometrics, Elsevier, vol. 162(1), pages 44-54, May.
    16. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    17. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    18. repec:dau:papers:123456789/5465 is not listed on IDEAS
    19. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    20. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tore S. Kleppe & Atle Oglend, 2019. "Can limits‐to‐arbitrage from bounded storage improve commodity term‐structure modeling?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 865-889, July.
    2. Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    3. Pieroni, Luca & Ricciarelli, Matteo, 2008. "Modelling dynamic storage function in commodity markets: Theory and evidence," Economic Modelling, Elsevier, vol. 25(5), pages 1080-1092, September.
    4. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    5. Liu, Peng (Peter) & Tang, Ke, 2010. "No-arbitrage conditions for storable commodities and the modeling of futures term structures," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1675-1687, July.
    6. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    7. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    8. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    9. Peter Berling & Victor Martínez-de-Albéniz, 2011. "Optimal Inventory Policies when Purchase Price and Demand Are Stochastic," Operations Research, INFORMS, vol. 59(1), pages 109-124, February.
    10. Loïc Maréchal, 2023. "A tale of two premiums revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 580-614, May.
    11. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    12. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    13. Power, Gabriel J. & Turvey, Calum G., 2008. "On Term Structure Models of Commodity Futures Prices and the Kaldor-Working Hypothesis," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37608, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    14. Jaime Casassus & Peng Liu & Ke Tang, 2011. "Relative Scarcity of Commodities with a Long-Term Economic Relationship and the Correlation of Futures Returns," Documentos de Trabajo 404, Instituto de Economia. Pontificia Universidad Católica de Chile..
    15. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    16. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    17. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    18. Razvan Tudor, 2009. "Evidence of unspanned stochastic volatility in crude-oil market," Advances in Economic and Financial Research - DOFIN Working Paper Series 33, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    19. Oglend, Atle & Kleppe, Tore Selland, 2017. "On the behavior of commodity prices when speculative storage is bounded," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 52-69.
    20. Kleppe, Tore Selland & Oglend, Atle, 2017. "Estimating the competitive storage model: A simulated likelihood approach," Econometrics and Statistics, Elsevier, vol. 4(C), pages 39-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10304-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.