IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v43y2009i1p70-85.html
   My bibliography  Save this article

A Hybrid Solution Approach for Ready-Mixed Concrete Delivery

Author

Listed:
  • Verena Schmid

    (Department of Business Administration, University of Vienna, A-1210 Vienna, Austria)

  • Karl F. Doerner

    (Department of Business Administration, University of Vienna, A-1210 Vienna, Austria)

  • Richard F. Hartl

    (Department of Business Administration, University of Vienna, A-1210 Vienna, Austria)

  • Martin W. P. Savelsbergh

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Wolfgang Stoecher

    (Profactor Produktionsforschungs GmbH, A-4407 Steyr-Gleink, Austria)

Abstract

Companies in the concrete industry are facing the following scheduling problem on a daily basis: Concrete produced at several plants has to be delivered at customers' construction sites using a heterogeneous fleet of vehicles in a timely, but cost-effective manner. As the ordered quantity of concrete typically exceeds the capacity of a single vehicle several deliveries need to be scheduled in order to fulfill an order. The deliveries cannot overlap and the time between consecutive deliveries has to be small. Our solution approach effectively integrates optimization and heuristic techniques. Information is passed back and forth between an integer multicommodity flow optimization component and a variable neighborhood search component in order to find high-quality solutions in a reasonable amount of time. Even though both components are capable of producing feasible solutions, the integrated approach is far more effective. Computational results show that our hybrid approach outperforms an innovative metaheuristic approach by more than 6% on average for large instances.

Suggested Citation

  • Verena Schmid & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh & Wolfgang Stoecher, 2009. "A Hybrid Solution Approach for Ready-Mixed Concrete Delivery," Transportation Science, INFORMS, vol. 43(1), pages 70-85, February.
  • Handle: RePEc:inm:ortrsc:v:43:y:2009:i:1:p:70-85
    DOI: 10.1287/trsc.1080.0249
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1080.0249
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1080.0249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    2. Naso, David & Surico, Michele & Turchiano, Biagio & Kaymak, Uzay, 2007. "Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2069-2099, March.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    2. Schönberger, Jörn, 2017. "Implicit time windows and multi-commodity mixed-fleet vehicle routing," Discussion Papers 1/2017, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    3. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    4. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    5. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    6. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    7. Kamal Lamsal & Philip C. Jones & Barrett W. Thomas, 2017. "Sugarcane Harvest Logistics in Brazil," Transportation Science, INFORMS, vol. 51(2), pages 771-789, May.
    8. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    9. Sophie N. Parragh & Karl F. Doerner, 2018. "Solving routing problems with pairwise synchronization constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 443-464, June.
    10. Tommaso Bianconcini & David Di Lorenzo & Alessandro Lori & Fabio Schoen & Leonardo Taccari, 2018. "Exploiting sets of independent moves in VRP," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 93-120, June.
    11. Margaretha Gansterer & Richard F. Hartl, 2018. "Centralized bundle generation in auction-based collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 613-635, July.
    12. Hertz, Alain & Uldry, Marc & Widmer, Marino, 2012. "Integer linear programming models for a cement delivery problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 623-631.
    13. Philippe Grangier & Michel Gendreau & Fabien Lehuédé & Louis-Martin Rousseau, 2021. "The vehicle routing problem with cross-docking and resource constraints," Journal of Heuristics, Springer, vol. 27(1), pages 31-61, April.
    14. Oluseye Olugboyega & Obuks Ejohwomu & Emmanuel Dele Omopariola & Alohan Omoregie, 2023. "Sustainable Ready-Mixed Concrete (RMC) Production: A Case Study of Five RMC Plants in Nigeria," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    15. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.
    16. Ling Liu & Sen Liu, 2020. "Integrated Production and Distribution Problem of Perishable Products with a Minimum Total Order Weighted Delivery Time," Mathematics, MDPI, vol. 8(2), pages 1-18, January.
    17. Erick Moreno-Centeno & Richard M. Karp, 2013. "The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Application to Multigenome Alignment," Operations Research, INFORMS, vol. 61(2), pages 453-468, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaza Hanif & Shahab Ud Din & Ning Gui & Tom Holvoet, 2023. "Multiagent Coordination and Teamwork: A Case Study for Large-Scale Dynamic Ready-Mixed Concrete Delivery Problem," Mathematics, MDPI, vol. 11(19), pages 1-25, September.
    2. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    3. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    4. Maud Bay & Yves Crama & Yves Langer & Philippe Rigo, 2010. "Space and time allocation in a shipyard assembly hall," Annals of Operations Research, Springer, vol. 179(1), pages 57-76, September.
    5. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    6. Hanen Akrout & Bassem Jarboui & Patrick Siarry & Abdelwaheb Rebaï, 2012. "A GRASP based on DE to solve single machine scheduling problem with SDST," Computational Optimization and Applications, Springer, vol. 51(1), pages 411-435, January.
    7. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    8. Paola Pellegrini & Lorenzo Castelli & Raffaele Pesenti, 2011. "Metaheuristic algorithms for the simultaneous slot allocation problem," Working Papers 9, Department of Management, Università Ca' Foscari Venezia.
    9. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
    10. Ekaterina Alekseeva & Yury Kochetov & Alexandr Plyasunov, 2015. "An exact method for the discrete $$(r|p)$$ ( r | p ) -centroid problem," Journal of Global Optimization, Springer, vol. 63(3), pages 445-460, November.
    11. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    12. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    13. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    14. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
    15. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    16. Irawan, Chandra Ade & Salhi, Said & Scaparra, Maria Paola, 2014. "An adaptive multiphase approach for large unconditional and conditional p-median problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 590-605.
    17. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    18. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    19. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    20. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:43:y:2009:i:1:p:70-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.