IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v136y2005i1p145-17310.1007-s10479-005-2043-3.html
   My bibliography  Save this article

Heuristic Procedures for Solving the Discrete Ordered Median Problem

Author

Listed:
  • Patricia Domínguez-Marín
  • Stefan Nickel
  • Pierre Hansen
  • Nenad Mladenović

Abstract

We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median and p-center. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega (1996) for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen and Mladenović (1997) for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.
  • Handle: RePEc:spr:annopr:v:136:y:2005:i:1:p:145-173:10.1007/s10479-005-2043-3
    DOI: 10.1007/s10479-005-2043-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-005-2043-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-005-2043-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    2. Antonio M. Rodríguez-Chía & Stefan Nickel & Justo Puerto & Francisco R. Fernández, 2000. "A flexible approach to location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 69-89, February.
    3. Sourour Elloumi & Martine Labbé & Yves Pochet, 2004. "A New Formulation and Resolution Method for the p-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 84-94, February.
    4. Beasley, J. E., 1985. "A note on solving large p-median problems," European Journal of Operational Research, Elsevier, vol. 21(2), pages 270-273, August.
    5. R. L. Francis & T. J. Lowe & Arie Tamir, 2000. "Aggregation Error Bounds for a Class of Location Models," Operations Research, INFORMS, vol. 48(2), pages 294-307, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    2. Olender, Paweł & Ogryczak, Włodzimierz, 2019. "A revised Variable Neighborhood Search for the Discrete Ordered Median Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 445-465.
    3. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    4. Stanimirovic, Zorica & Kratica, Jozef & Dugosija, Djordje, 2007. "Genetic algorithms for solving the discrete ordered median problem," European Journal of Operational Research, Elsevier, vol. 182(3), pages 983-1001, November.
    5. Jörg Kalcsics & Stefan Nickel & Justo Puerto & Antonio Rodríguez-Chía, 2010. "The ordered capacitated facility location problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 203-222, July.
    6. Kalcsics, Jörg & Nickel, Stefan & Puerto, Justo & Rodríguez-Chía, Antonio M., 2010. "Distribution systems design with role dependent objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 491-501, April.
    7. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    8. Víctor Blanco, 2019. "Ordered p-median problems with neighbourhoods," Computational Optimization and Applications, Springer, vol. 73(2), pages 603-645, June.
    9. Martínez-Merino, Luisa I. & Albareda-Sambola, Maria & Rodríguez-Chía, Antonio M., 2017. "The probabilistic p-center problem: Planning service for potential customers," European Journal of Operational Research, Elsevier, vol. 262(2), pages 509-520.
    10. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    11. Samuel Deleplanque & Martine Labbé & Diego Ponce & Justo Puerto, 2020. "A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 582-599, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    2. Kalcsics, Jörg & Nickel, Stefan & Puerto, Justo & Rodríguez-Chía, Antonio M., 2010. "Distribution systems design with role dependent objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 491-501, April.
    3. Fathali, J. & Kakhki, H. Taghizadeh, 2006. "Solving the p-median problem with pos/neg weights by variable neighborhood search and some results for special cases," European Journal of Operational Research, Elsevier, vol. 170(2), pages 440-462, April.
    4. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    5. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    6. R. Francis & T. Lowe & M. Rayco & A. Tamir, 2009. "Aggregation error for location models: survey and analysis," Annals of Operations Research, Springer, vol. 167(1), pages 171-208, March.
    7. Irawan, Chandra Ade & Salhi, Said & Scaparra, Maria Paola, 2014. "An adaptive multiphase approach for large unconditional and conditional p-median problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 590-605.
    8. Nickel, Stefan & Velten, Sebastian, 2017. "Optimization problems with flexible objectives: A general modeling approach and applications," European Journal of Operational Research, Elsevier, vol. 258(1), pages 79-88.
    9. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    10. Olender, Paweł & Ogryczak, Włodzimierz, 2019. "A revised Variable Neighborhood Search for the Discrete Ordered Median Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 445-465.
    11. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    12. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    14. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    15. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    16. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    17. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    18. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    19. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    20. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:136:y:2005:i:1:p:145-173:10.1007/s10479-005-2043-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.