IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v38y2004i4p473-487.html
   My bibliography  Save this article

Anticipatory Route Selection

Author

Listed:
  • Barrett W. Thomas

    (Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242-1000)

  • Chelsea C. White

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

Abstract

Mobile communication technologies enable communication between dispatchers and drivers and hence can enable fleet management based on real-time information. We assume that such communication capability exists for a single pickup and delivery vehicle and that we know the likelihood, as a function of time, that each of the vehicle's potential customers will make a pickup request. We then model and analyze the problem of constructing a minimum expected total cost route from an origin to a destination that anticipates and then responds to service requests, if they occur, while the vehicle is en route. We model this problem as a Markov decision process and present several structured results associated with the optimal expected cost-to-go function and an optimal policy for route construction. We illustrate the behavior of an optimal policy with several numerical examples and demonstrate the superiority of an optimal anticipatory policy, relative to a route design approach that reflects the reactive nature of current routing procedures for less-than-truckload pickup and delivery.

Suggested Citation

  • Barrett W. Thomas & Chelsea C. White, 2004. "Anticipatory Route Selection," Transportation Science, INFORMS, vol. 38(4), pages 473-487, November.
  • Handle: RePEc:inm:ortrsc:v:38:y:2004:i:4:p:473-487
    DOI: 10.1287/trsc.1030.0071
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1030.0071
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1030.0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    3. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    4. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    5. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    6. Dimitris J. Bertsimas & Garrett van Ryzin, 1991. "A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane," Operations Research, INFORMS, vol. 39(4), pages 601-615, August.
    7. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    8. Bertsimas, Dimitris & Van Ryzin, Garrett., 1991. "A stochastic and dynamic vehicle routing problem in the Euclidean plane," Working papers 3286-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    9. Dimitris J. Bertsimas, 1992. "A Vehicle Routing Problem with Stochastic Demand," Operations Research, INFORMS, vol. 40(3), pages 574-585, June.
    10. Swihart, Michael R. & Papastavrou, Jason D., 1999. "A stochastic and dynamic model for the single-vehicle pick-up and delivery problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 447-464, May.
    11. Harilaos N. Psaraftis & John N. Tsitsiklis, 1993. "Dynamic Shortest Paths in Acyclic Networks with Markovian Arc Costs," Operations Research, INFORMS, vol. 41(1), pages 91-101, February.
    12. Patrick Jaillet, 1988. "A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited," Operations Research, INFORMS, vol. 36(6), pages 929-936, December.
    13. Dimitris J. Bertsimas & Garrett van Ryzin, 1993. "Stochastic and Dynamic Vehicle Routing in the Euclidean Plane with Multiple Capacitated Vehicles," Operations Research, INFORMS, vol. 41(1), pages 60-76, February.
    14. Dimitris J. Bertsimas & David Simchi-Levi, 1996. "A New Generation of Vehicle Routing Research: Robust Algorithms, Addressing Uncertainty," Operations Research, INFORMS, vol. 44(2), pages 286-304, April.
    15. Warren B. Powell, 1996. "A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers," Transportation Science, INFORMS, vol. 30(3), pages 195-219, August.
    16. Warren B. Powell & Yosef Sheffi & Kenneth S. Nickerson & Kevin Butterbaugh & Susan Atherton, 1988. "Maximizing Profits for North American Van Lines' Truckload Division: A New Framework for Pricing and Operations," Interfaces, INFORMS, vol. 18(1), pages 21-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    2. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    3. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    4. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    5. Jürgen Branke & Martin Middendorf & Guntram Noeth & Maged Dessouky, 2005. "Waiting Strategies for Dynamic Vehicle Routing," Transportation Science, INFORMS, vol. 39(3), pages 298-312, August.
    6. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    7. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    8. Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
    9. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    10. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    11. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    12. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    13. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    14. Xiong Hao & Yan Huili, 2019. "General Method of Building a Real-Time Optimization Policy for Dynamic Vehicle Routing Problem," Journal of Systems Science and Information, De Gruyter, vol. 7(6), pages 584-598, December.
    15. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    16. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    17. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    18. Thomas, Barrett W. & White III, Chelsea C., 2007. "The dynamic shortest path problem with anticipation," European Journal of Operational Research, Elsevier, vol. 176(2), pages 836-854, January.
    19. Azaron, Amir & Kianfar, Farhad, 2003. "Dynamic shortest path in stochastic dynamic networks: Ship routing problem," European Journal of Operational Research, Elsevier, vol. 144(1), pages 138-156, January.
    20. Sheridan, Patricia Kristine & Gluck, Erich & Guan, Qi & Pickles, Thomas & Balcıog˜lu, Barış & Benhabib, Beno, 2013. "The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 178-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:38:y:2004:i:4:p:473-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.