IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v34y2000i4p426-438.html
   My bibliography  Save this article

Diversion Issues in Real-Time Vehicle Dispatching

Author

Listed:
  • Soumia Ichoua

    (Centre de recherche sur les transports and Département d'informatique et de recherche opérationnelle, Universitéde Montréal, C.P. 6128, succ. Centre-pville, Montréal, Québec, H3C 3J7, Canada)

  • Michel Gendreau

    (Centre de recherche sur les transports and Département d'informatique et de recherche opérationnelle, Universitéde Montréal, C.P. 6128, succ. Centre-pville, Montréal, Québec, H3C 3J7, Canada)

  • Jean-Yves Potvin

    (Centre de recherche sur les transports and Département d'informatique et de recherche opérationnelle, Universitéde Montréal, C.P. 6128, succ. Centre-pville, Montréal, Québec, H3C 3J7, Canada)

Abstract

Recent technological advances in communication systems now allow the exploitation of realtime information for dynamic vehicle routing and scheduling. It is possible, in particular, to consider diverting a vehicle away from its current destination in response to a new customer request. In this paper, a strategy for assigning customer requests, which includes diversion, is proposed, and various issues related to it are presented. An empirical evaluation of the proposed approach is performed within a previously reported tabu search heuristic. Simulations compare the tabu search heuristic, with and without the new strategy, on a dynamic problem motivated from a courier service application. The results demonstrate the potential savings that can be obtained through the application of the proposed approach.

Suggested Citation

  • Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
  • Handle: RePEc:inm:ortrsc:v:34:y:2000:i:4:p:426-438
    DOI: 10.1287/trsc.34.4.426.12325
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.34.4.426.12325
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.34.4.426.12325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hill, A. V. & Mabert, V. A. & Montgomery, D. W., 1988. "A decision support system for the courier vehicle scheduling problem," Omega, Elsevier, vol. 16(4), pages 333-345.
    2. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    3. Harilaos N. Psaraftis, 1983. "An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows," Transportation Science, INFORMS, vol. 17(3), pages 351-357, August.
    4. Dimitris J. Bertsimas & Garrett van Ryzin, 1991. "A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane," Operations Research, INFORMS, vol. 39(4), pages 601-615, August.
    5. Bertsimas, Dimitris & Van Ryzin, Garrett., 1991. "A stochastic and dynamic vehicle routing problem in the Euclidean plane," Working papers 3286-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Gerald G. Brown & Carol J. Ellis & Glenn W. Graves & David Ronen, 1987. "Real-Time, Wide Area Dispatch of Mobil Tank Trucks," Interfaces, INFORMS, vol. 17(1), pages 107-120, February.
    7. Dimitris J. Bertsimas & Garrett van Ryzin, 1993. "Stochastic and Dynamic Vehicle Routing in the Euclidean Plane with Multiple Capacitated Vehicles," Operations Research, INFORMS, vol. 41(1), pages 60-76, February.
    8. Alan S. Minkoff, 1993. "A Markov Decision Model and Decomposition Heuristic for Dynamic Vehicle Dispatching," Operations Research, INFORMS, vol. 41(1), pages 77-90, February.
    9. Bertsimas, Dimitris & Chervi, Philippe. & Peterson, Michael., 1991. "Computational approaches to stochastic vehicle routing problems," Working papers 3285-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    10. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    11. David M. Stein, 1978. "Scheduling Dial-a-Ride Transportation Systems," Transportation Science, INFORMS, vol. 12(3), pages 232-249, August.
    12. Rajendra S. Solanki & Frank Southworth, 1991. "An Execution Planning Algorithm for Military Airlift," Interfaces, INFORMS, vol. 21(4), pages 121-131, August.
    13. Warren B. Powell & Yosef Sheffi & Kenneth S. Nickerson & Kevin Butterbaugh & Susan Atherton, 1988. "Maximizing Profits for North American Van Lines' Truckload Division: A New Framework for Pricing and Operations," Interfaces, INFORMS, vol. 18(1), pages 21-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    3. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    4. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    5. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    6. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    7. Barrett W. Thomas & Chelsea C. White, 2004. "Anticipatory Route Selection," Transportation Science, INFORMS, vol. 38(4), pages 473-487, November.
    8. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    9. Noah Gans & Garrett van Ryzin, 1999. "Dynamic Vehicle Dispatching: Optimal Heavy Traffic Performance and Practical Insights," Operations Research, INFORMS, vol. 47(5), pages 675-692, October.
    10. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    11. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    12. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    13. Malmborg, Charles J., 1996. "A genetic algorithm for service level based vehicle scheduling," European Journal of Operational Research, Elsevier, vol. 93(1), pages 121-134, August.
    14. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    15. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    16. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    17. Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
    18. Atieh Madani & Rajan Batta & Mark Karwan, 2021. "The balancing traveling salesman problem: application to warehouse order picking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 442-469, July.
    19. Xiong Hao & Yan Huili, 2019. "General Method of Building a Real-Time Optimization Policy for Dynamic Vehicle Routing Problem," Journal of Systems Science and Information, De Gruyter, vol. 7(6), pages 584-598, December.
    20. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:34:y:2000:i:4:p:426-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.