IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i2p366-382.html
   My bibliography  Save this article

A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times

Author

Listed:
  • E. Nikolova

    (Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712; and Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843)

  • N. E. Stier-Moses

    (Graduate School of Business, Columbia University, New York, New York 10027; and School of Business, Universidad Torcuato Di Tella and CONICET, Buenos Aires C1428B1J, Argentina)

Abstract

Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditional model of Wardrop competition when uncertainty is present in the network. The focus is on strategic risk-averse users who capture the trade-off between travel times and their variability in a mean-standard deviation objective, defined as the mean travel time plus a risk-aversion factor times the standard deviation of travel time along a path. We consider both infinitesimal users, leading to a nonatomic game, and atomic users, leading to a discrete finite game. We establish conditions that characterize an equilibrium traffic assignment and find when it exists. The main challenge is posed by the users' risk aversion, since the mean-standard deviation objective is nonconvex and nonseparable, meaning that a path cannot be split as a sum of edge costs. As a result, even an individual user's subproblem---a stochastic shortest path problem---is a nonconvex optimization problem for which no polynomial time algorithms are known. In turn, the mathematical structure of the traffic assignment model with stochastic travel times is fundamentally different from the deterministic counterpart. In particular, an equilibrium characterization requires exponentially many variables, one for each path in the network, since an edge flow has multiple possible path-flow decompositions that are not equivalent. Because of this, characterizing the equilibrium and the socially optimal assignment, which minimizes the total user cost, is more challenging than in the traditional deterministic setting. Nevertheless, we prove that both can be encoded by a representation with just polynomially many paths. Finally, under the assumption that the standard deviations of travel times are independent from edge loads, we show that the worst-case ratio between the social cost of an equilibrium and that of an optimal solution is not higher than the analogous ratio in the deterministic setting. In other words, uncertainty does not further degrade the system performance in addition to strategic user behavior alone.

Suggested Citation

  • E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:366-382
    DOI: 10.1287/opre.2013.1246
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1246
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Pitu Mirchandani & Hossein Soroush, 1987. "Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions," Transportation Science, INFORMS, vol. 21(3), pages 133-152, August.
    3. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    4. Steven A. Gabriel & David Bernstein, 1997. "The Traffic Equilibrium Problem with Nonadditive Path Costs," Transportation Science, INFORMS, vol. 31(4), pages 337-348, November.
    5. Patrick T. Harker, 1988. "Multiple Equilibrium Behaviors on Networks," Transportation Science, INFORMS, vol. 22(1), pages 39-46, February.
    6. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    7. Nisan,Noam & Roughgarden,Tim & Tardos,Eva & Vazirani,Vijay V. (ed.), 2007. "Algorithmic Game Theory," Cambridge Books, Cambridge University Press, number 9780521872829.
    8. Dimitri P. Bertsekas & John N. Tsitsiklis, 1991. "An Analysis of Stochastic Shortest Path Problems," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 580-595, August.
    9. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    10. Bell, Michael G. H. & Cassir, Chris, 2002. "Risk-averse user equilibrium traffic assignment: an application of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 671-681, September.
    11. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    12. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    13. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    14. Akamatsu, Takashi, 1996. "Cyclic flows, Markov process and stochastic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 369-386, October.
    15. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    16. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    17. Correa, José R. & Schulz, Andreas S. & Stier-Moses, Nicolás E., 2008. "A geometric approach to the price of anarchy in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 457-469, November.
    18. Michel Trahan, 1974. "Probabilistic Assignment: An Algorithm," Transportation Science, INFORMS, vol. 8(4), pages 311-320, November.
    19. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    20. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    21. Nie, Yu (Marco), 2011. "Multi-class percentile user equilibrium with flow-dependent stochasticity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1641-1659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manxi Wu & Saurabh Amin & Asuman E. Ozdaglar, 2021. "Value of Information in Bayesian Routing Games," Operations Research, INFORMS, vol. 69(1), pages 148-163, January.
    2. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    3. Xinming Zang & Zhenqi Guo & Jingai Ma & Yongguang Zhong & Xiangfeng Ji, 2021. "Target-Oriented User Equilibrium Considering Travel Time, Late Arrival Penalty, and Travel Cost on the Stochastic Tolled Traffic Network," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    4. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    5. Randall Berry & Michael Honig & Thành Nguyen & Vijay Subramanian & Rakesh Vohra, 2020. "The Value of Sharing Intermittent Spectrum," Management Science, INFORMS, vol. 66(11), pages 5242-5264, November.
    6. Xu, Zhandong & Chen, Anthony & Liu, Xiaobo, 2023. "Time and toll trade-off with heterogeneous users: A continuous time surplus maximization bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 31-58.
    7. Pieter Kleer, 2023. "Price of anarchy for parallel link networks with generalized mean objective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 27-55, March.
    8. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    9. Ashish R. Hota & Siddharth Garg & Shreyas Sundaram, 2014. "Fragility of the Commons under Prospect-Theoretic Risk Attitudes," Papers 1408.5951, arXiv.org, revised Jun 2016.
    10. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    11. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    12. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    13. Hota, Ashish R. & Garg, Siddharth & Sundaram, Shreyas, 2016. "Fragility of the commons under prospect-theoretic risk attitudes," Games and Economic Behavior, Elsevier, vol. 98(C), pages 135-164.
    14. Sojung Kim & Marcel Kleiber & Stefan Weber, 2022. "Microscopic Traffic Models, Accidents, and Insurance Losses," Papers 2208.12530, arXiv.org, revised Nov 2023.
    15. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    16. Thanasis Lianeas & Evdokia Nikolova & Nicolas E. Stier-Moses, 2019. "Risk-Averse Selfish Routing," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 38-57, February.
    17. Correa, José & Hoeksma, Ruben & Schröder, Marc, 2019. "Network congestion games are robust to variable demand," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 69-78.
    18. Qi, Jin & Sim, Melvyn & Sun, Defeng & Yuan, Xiaoming, 2016. "Preferences for travel time under risk and ambiguity: Implications in path selection and network equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 264-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    2. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    3. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    4. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    5. Nie, Yu (Marco), 2011. "Multi-class percentile user equilibrium with flow-dependent stochasticity," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1641-1659.
    6. Qi, Jin & Sim, Melvyn & Sun, Defeng & Yuan, Xiaoming, 2016. "Preferences for travel time under risk and ambiguity: Implications in path selection and network equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 264-284.
    7. Amirgholy, Mahyar & Gonzales, Eric J., 2017. "Efficient frontier of route choice for modeling the equilibrium under travel time variability with heterogeneous traveler preferences," Economics of Transportation, Elsevier, vol. 11, pages 1-14.
    8. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    9. Connors, Richard D. & Sumalee, Agachai, 2009. "A network equilibrium model with travellers' perception of stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 614-624, July.
    10. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    11. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    12. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    13. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    14. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    15. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    16. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    17. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    18. Thanasis Lianeas & Evdokia Nikolova & Nicolas E. Stier-Moses, 2019. "Risk-Averse Selfish Routing," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 38-57, February.
    19. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    20. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:366-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.