IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9992-d630230.html
   My bibliography  Save this article

Target-Oriented User Equilibrium Considering Travel Time, Late Arrival Penalty, and Travel Cost on the Stochastic Tolled Traffic Network

Author

Listed:
  • Xinming Zang

    (Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China)

  • Zhenqi Guo

    (Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China)

  • Jingai Ma

    (Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China)

  • Yongguang Zhong

    (Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China)

  • Xiangfeng Ji

    (Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao 266071, China)

Abstract

In this paper, we employ a target-oriented approach to analyze the multi-attribute route choice decision of travelers in the stochastic tolled traffic network, considering the influence of three attributes, which are (stochastic) travel time, (stochastic) late arrival penalty, and (deterministic) travel cost. We introduce a target-oriented multi-attribute travel utility model for this analysis, where each attribute is assigned a target by travelers, and travelers’ objective is to maximize their travel utility that is determined by the achieved targets. Moreover, the interaction between targets is interpreted as complementarity relationship between them, which can further affect their travel utility. In addition, based on this travel utility model, a target-oriented multi-attribute user equilibrium model is proposed, which is formulated as a variational inequality problem and solved with the method of successive average. Target for travel time is determined via travelers’ on-time arrival probability, while targets for late arrival penalty and travel cost are given exogenously. Lastly, we apply the proposed model on the Braess and Nguyen–Dupuis traffic networks, and conduct sensitivity analysis of the parameters, including these three targets and the target interaction between them. The study in this paper can provide a new perspective for travelers’ multi-attribute route choice decision, which can further show some implications for the policy design.

Suggested Citation

  • Xinming Zang & Zhenqi Guo & Jingai Ma & Yongguang Zhong & Xiangfeng Ji, 2021. "Target-Oriented User Equilibrium Considering Travel Time, Late Arrival Penalty, and Travel Cost on the Stochastic Tolled Traffic Network," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9992-:d:630230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brownstone, David & Ghosh, Arindam & Golob, Thomas F. & Kazimi, Camilla & Van Amelsfort, Dirk, 2003. "Drivers' willingness-to-pay to reduce travel time: evidence from the San Diego I-15 congestion pricing project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 373-387, May.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    4. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    5. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    6. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    7. Xiangfeng Ji & Xiaoyu Ao, 2021. "Travelers’ Bi-Attribute Decision Making on the Risky Mode Choice with Flow-Dependent Salience Theory," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
    8. Watling, David, 2006. "User equilibrium traffic network assignment with stochastic travel times and late arrival penalty," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1539-1556, December.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    11. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    12. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    13. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    14. Erel Avineri, 2006. "The Effect of Reference Point on Stochastic Network Equilibrium," Transportation Science, INFORMS, vol. 40(4), pages 409-420, November.
    15. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    16. Schwanen, Tim & Ettema, Dick, 2009. "Coping with unreliable transportation when collecting children: Examining parents' behavior with cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 511-525, June.
    17. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
    18. Sang Nguyen & Clermont Dupuis, 1984. "An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs," Transportation Science, INFORMS, vol. 18(2), pages 185-202, May.
    19. Wijayaratna, Kasun P. & Dixit, Vinayak V., 2016. "Impact of information on risk attitudes: Implications on valuation of reliability and information," Journal of choice modelling, Elsevier, vol. 20(C), pages 16-34.
    20. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    21. Stephen Boyles & S. Waller, 2011. "Optimal Information Location for Adaptive Routing," Networks and Spatial Economics, Springer, vol. 11(2), pages 233-254, June.
    22. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    23. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    24. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    25. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    26. S Travis 2☯ & Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S. Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," Post-Print halshs-02439201, HAL.
    27. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    2. Xiangfeng Ji & Xiaoyu Ao, 2021. "Travelers’ Bi-Attribute Decision Making on the Risky Mode Choice with Flow-Dependent Salience Theory," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
    3. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    4. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
    5. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    6. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    7. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    8. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    9. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    10. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    11. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    12. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    13. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    14. Bao, Yue & Gao, Ziyou & Xu, Meng & Sun, Huijun & Yang, Hai, 2015. "Travel mental budgeting under road toll: An investigation based on user equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 1-17.
    15. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    16. Xu, Junxiang & Zhang, Jin & Guo, Jingni, 2021. "Contribution to the field of traffic assignment: A boundedly rational user equilibrium model with uncertain supply and demand," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    17. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    18. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    19. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    20. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9992-:d:630230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.