IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i2p382-397.html
   My bibliography  Save this article

A Column-Generation Based Tactical Planning Method for Inventory Routing

Author

Listed:
  • S. Michel

    (Université du Havre; INRIA Bordeaux Sud-Ouest, 33405 Talence Cedex, France)

  • F. Vanderbeck

    (Université Bordeaux 1; INRIA Bordeaux Sud-Ouest, 33405 Talence Cedex, France)

Abstract

Inventory routing problems combine the optimization of product deliveries (or pickups) with inventory control at customer sites. The application that motivates this paper concerns the planning of single-product pickups over time; each site accumulates stock at a deterministic rate; the stock is emptied on each visit. At the tactical planning stage considered here, the objective is to minimize a surrogate measure of routing cost while achieving some form of regional clustering by partitioning the sites between the vehicles. The fleet size is given but can potentially be reduced. Planning consists of assigning customers to vehicles in each time period, but the routing, i.e., the actual sequence in which vehicles visit customers, is considered an “operational” decision. The planning is due to be repeated over the time horizon with constrained periodicity. We develop a truncated branch-and-price-and-cut algorithm combined with rounding and local search heuristics that yield both primal solutions and dual bounds. On a large-scale industrial test problem (with close to 6,000 customer visits to schedule), we obtain a solution within 6.25% deviation from the optimal to our model. A rough comparison between an operational routing resulting from our tactical solution and the industrial practice shows a 10% decrease in the number of vehicles as well as in the travel distance. The key to the success of the approach is the use of a state-space relaxation technique in formulating the master program to avoid the symmetry in time.

Suggested Citation

  • S. Michel & F. Vanderbeck, 2012. "A Column-Generation Based Tactical Planning Method for Inventory Routing," Operations Research, INFORMS, vol. 60(2), pages 382-397, April.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:2:p:382-397
    DOI: 10.1287/opre.1110.1015
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.1015
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.1015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    3. Claudia Archetti & M. Grazia Speranza & Martin W. P. Savelsbergh, 2008. "An Optimization-Based Heuristic for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 42(1), pages 22-31, February.
    4. Luca Bertazzi & Giuseppe Paletta & M. Grazia Speranza, 2002. "Deterministic Order-Up-To Level Policies in an Inventory Routing Problem," Transportation Science, INFORMS, vol. 36(1), pages 119-132, February.
    5. Oktay Günlük & Tracy Kimbrel & Laszlo Ladanyi & Baruch Schieber & Gregory B. Sorkin, 2006. "Vehicle Routing and Staffing for Sedan Service," Transportation Science, INFORMS, vol. 40(3), pages 313-326, August.
    6. Michel Gamache & François Soumis & Gérald Marquis & Jacques Desrosiers, 1999. "A Column Generation Approach for Large-Scale Aircrew Rostering Problems," Operations Research, INFORMS, vol. 47(2), pages 247-263, April.
    7. Julien Bramel & David Simchi-Levi, 1995. "A Location Based Heuristic for General Routing Problems," Operations Research, INFORMS, vol. 43(4), pages 649-660, August.
    8. Webb, Ian R. & Larson, Richard C., 1995. "Period and phase of customer replenishment: A new approach to the Strategic Inventory/Routing problem," European Journal of Operational Research, Elsevier, vol. 85(1), pages 132-148, August.
    9. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    10. François Vanderbeck, 2005. "Implementing Mixed Integer Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 331-358, Springer.
    11. Belov, G. & Scheithauer, G., 2002. "A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths," European Journal of Operational Research, Elsevier, vol. 141(2), pages 274-294, September.
    12. T. William Chien & Anantaram Balakrishnan & Richard T. Wong, 1989. "An Integrated Inventory Allocation and Vehicle Routing Problem," Transportation Science, INFORMS, vol. 23(2), pages 67-76, May.
    13. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    14. François Vanderbeck, 2000. "Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem," Operations Research, INFORMS, vol. 48(6), pages 915-926, December.
    15. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    16. Vishal Gaur & Marshall L. Fisher, 2004. "A Periodic Inventory Routing Problem at a Supermarket Chain," Operations Research, INFORMS, vol. 52(6), pages 813-822, December.
    17. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Kang Lin & Shangyao Yan & Fei-Yen Hsiao, 2021. "Optimal Inventory Level Control and Replenishment Plan for Retailers," Networks and Spatial Economics, Springer, vol. 21(1), pages 57-83, March.
    2. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    3. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    4. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    6. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    7. Nabil Absi & Diego Cattaruzza & Dominique Feillet & Maxime Ogier & Frédéric Semet, 2020. "A Heuristic Branch-Cut-and-Price Algorithm for the ROADEF/EURO Challenge on Inventory Routing," Transportation Science, INFORMS, vol. 54(2), pages 313-329, March.
    8. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    9. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    10. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    2. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    3. Paweł Hanczar, 2014. "Solving IRP using location based heuristics," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(2), pages 81-96.
    4. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    5. Fokkema, Jan Eise & Land, Martin J. & Coelho, Leandro C. & Wortmann, Hans & Huitema, George B., 2020. "A continuous-time supply-driven inventory-constrained routing problem," Omega, Elsevier, vol. 92(C).
    6. Ahmed Kheiri, 2020. "Heuristic Sequence Selection for Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 302-312, March.
    7. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    8. Lap Mui Ann Chan & M. Grazia Speranza & Luca Bertazzi, 2013. "Asymptotic analysis of periodic policies for the inventory routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 525-540, October.
    9. Jin-Hwa Song & Martin Savelsbergh, 2007. "Performance Measurement for Inventory Routing," Transportation Science, INFORMS, vol. 41(1), pages 44-54, February.
    10. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    11. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    12. Raa, Birger & Aghezzaf, El-Houssaine, 2009. "A practical solution approach for the cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 429-441, January.
    13. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    14. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    15. Ali Ekici & Okan Örsan Özener & Gültekin Kuyzu, 2015. "Cyclic Delivery Schedules for an Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 817-829, November.
    16. Zhouxing Su & Zhipeng Lü & Zhuo Wang & Yanmin Qi & Una Benlic, 2020. "A Matheuristic Algorithm for the Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 330-354, March.
    17. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    18. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    19. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    20. Oğuz Solyalı & Haldun Süral, 2011. "A Branch-and-Cut Algorithm Using a Strong Formulation and an A Priori Tour-Based Heuristic for an Inventory-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 335-345, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:2:p:382-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.