IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i5p679-692.html
   My bibliography  Save this article

Ending Inventory Valuation in Multiperiod Production Scheduling

Author

Listed:
  • Marshall Fisher

    (Operations and Information Management Department, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

  • Kamalini Ramdas

    (Darden Graduate School of Business Administration, University of Virginia, Charlottesville, Virginia 22906-6550)

  • Yu-Sheng Zheng

    (Operations and Information Management Department, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

Abstract

When making lot-sizing decisions, managers often use a model horizon T that is much smaller than any reasonable estimate of the firm's future horizon. This is done because forecast accuracy deteriorates rapidly for longer horizons, while computational burden increases. However, what is optimal over the short horizon may be suboptimal over the long run, resulting in errors known as end-effects. A common end-effect in lot-sizing models is to set end-of-horizon inventory to zero. This policy can result in excessive setup costs or stock-outs in the long run. We present a method to mitigate end-effects in lot sizing by including a valuation term V(I T ) for end-of-horizon inventory I T , in the objective function of the short-horizon model. We develop this concept within the classical EOQ modeling framework, and then apply it to the dynamic lot-sizing problem (DLSP). If demand in each period of the DLSP equals the long-run average demand rate, then our procedure induces an optimal ordering policy over the short horizon that coincides with the long-run optimal ordering policy. We test our procedure empirically against the Wagner-Whitin algorithm and the Silver Meal heuristic, under several demand patterns, within a rolling horizon framework. With few exceptions, our approach significantly outperforms the other approaches tested, for modest to long model horizons. We discuss applicability to more general lot-sizing problems.

Suggested Citation

  • Marshall Fisher & Kamalini Ramdas & Yu-Sheng Zheng, 2001. "Ending Inventory Valuation in Multiperiod Production Scheduling," Management Science, INFORMS, vol. 47(5), pages 679-692, May.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:5:p:679-692
    DOI: 10.1287/mnsc.47.5.679.10485
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.5.679.10485
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.47.5.679.10485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, vol. 35(3), pages 353-366, March.
    2. C. R. Carr & C. W. Howe, 1962. "Optimal Service Policies and Finite Time Horizons," Management Science, INFORMS, vol. 9(1), pages 126-140, October.
    3. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    4. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    5. Gary D. Eppen & F. J. Gould & B. Peter Pashigian, 1969. "Extensions of the Planning Horizon Theorem in the Dynamic Lot Size Model," Management Science, INFORMS, vol. 15(5), pages 268-277, January.
    6. Richard C. Grinold, 1983. "Model Building Techniques for the Correction of End Effects in Multistage Convex Programs," Operations Research, INFORMS, vol. 31(3), pages 407-431, June.
    7. Suresh Chand & Suresh P. Sethi & Gerhard Sorger, 1992. "Forecast Horizons in the Discounted Dynamic Lot Size Model," Management Science, INFORMS, vol. 38(7), pages 1034-1048, July.
    8. Rolf A. Lundin & Thomas E. Morton, 1975. "Planning Horizons for the Dynamic Lot Size Model: Zabel vs. Protective Procedures and Computational Results," Operations Research, INFORMS, vol. 23(4), pages 711-734, August.
    9. Awi Federgruen & Michal Tzur, 1994. "Minimal Forecast Horizons and a New Planning Procedure for the General Dynamic Lot Sizing Model: Nervousness Revisited," Operations Research, INFORMS, vol. 42(3), pages 456-468, June.
    10. Edward Zabel, 1964. "Some Generalizations of an Inventory Planning Horizon Theorem," Management Science, INFORMS, vol. 10(3), pages 465-471, April.
    11. Kenneth R. Baker & Paul Dixon & Michael J. Magazine & Edward A. Silver, 1978. "An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints," Management Science, INFORMS, vol. 24(16), pages 1710-1720, December.
    12. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    13. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    14. Gabriel R. Bitran & Hirofumi Matsuo, 1986. "The Multi-Item Capacitated Lot Size Problem: Error Bounds of Manne's Formulations," Management Science, INFORMS, vol. 32(3), pages 350-359, March.
    15. Chung-Yee Lee & Eric V. Denardo, 1986. "Rolling Planning Horizons: Error Bounds for the Dynamic Lot Size Model," Mathematics of Operations Research, INFORMS, vol. 11(3), pages 423-432, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    2. Wilco van den Heuvel & Albert P.M. Wagelmans, 2002. "A Note on Ending Inventory Valuation in Multiperiod Production Scheduling," Tinbergen Institute Discussion Papers 02-067/4, Tinbergen Institute.
    3. Stéphane Dauzère-Pérès & Atle Nordli & Asmund Olstad & Kjetil Haugen & Ulrich Koester & Myrstad Per Olav & Geir Teistklub & Alf Reistad, 2007. "Omya Hustadmarmor Optimizes Its Supply Chain for Delivering Calcium Carbonate Slurry to European Paper Manufacturers," Interfaces, INFORMS, vol. 37(1), pages 39-51, February.
    4. Dong, Yachao & Maravelias, Christos T., 2021. "Terminal inventory level constraints for online production scheduling," European Journal of Operational Research, Elsevier, vol. 295(1), pages 102-117.
    5. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    6. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    7. Richard Kum-yew Lai, 2005. "Inventory Signals," Microeconomics 0509001, University Library of Munich, Germany.
    8. Wilco Van den Heuvel & Albert P. M. Wagelmans, 2010. "Worst-Case Analysis for a General Class of Online Lot-Sizing Heuristics," Operations Research, INFORMS, vol. 58(1), pages 59-67, February.
    9. Narayanan, Arunachalam & Robinson, Powell, 2010. "Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems," International Journal of Production Economics, Elsevier, vol. 127(1), pages 85-94, September.
    10. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, vol. 49(8), pages 1039-1054, August.
    11. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    12. Mariel Lavieri & Martin Puterman, 2009. "Optimizing nursing human resource planning in British Columbia," Health Care Management Science, Springer, vol. 12(2), pages 119-128, June.
    13. Yazdanparast, R. & Jolai, F. & Pishvaee, M.S. & Keramati, A., 2022. "A resilient drop-in biofuel supply chain integrated with existing petroleum infrastructure: Toward more sustainable transport fuel solutions," Renewable Energy, Elsevier, vol. 184(C), pages 799-819.
    14. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Rahal, Said & Papageorgiou, Dimitri J. & Li, Zukui, 2021. "Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive linear optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1014-1030.
    16. Peter McKenzie & Shekhar Jayanthi, 2007. "Ball Aerospace Explores Operational and Financial Trade-Offs in Batch Sizing in Implementing JIT," Interfaces, INFORMS, vol. 37(2), pages 108-119, April.
    17. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    18. Jiahua Zhang & Lian Qi & Shilu Tong, 2021. "Dynamic Contract under Quick Response in a Supply Chain with Information Asymmetry," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1273-1289, May.
    19. Mohammad Ebrahim Arbabian & Shi Chen & Kamran Moinzadeh, 2021. "Capacity Expansions with Bundled Supplies of Attributes: An Application to Server Procurement in Cloud Computing," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 191-209, 1-2.
    20. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    2. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    3. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    4. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    5. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    6. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    7. Richter, Knut & Sombrutzki, Mirko, 2000. "Remanufacturing planning for the reverse Wagner/Whitin models," European Journal of Operational Research, Elsevier, vol. 121(2), pages 304-315, March.
    8. Fuying Jing & Zirui Lan, 2017. "Forecast horizon of multi-item dynamic lot size model with perishable inventory," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    9. Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
    10. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    11. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    12. Martel, Alain & Gascon, Andre, 1998. "Dynamic lot-sizing with price changes and price-dependent holding costs," European Journal of Operational Research, Elsevier, vol. 111(1), pages 114-128, November.
    13. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    14. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    15. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    16. Kimms, Alf, 1996. "Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 418, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Bian, Yuan & Lemoine, David & Yeung, Thomas G. & Bostel, Nathalie & Hovelaque, Vincent & Viviani, Jean-laurent & Gayraud, Fabrice, 2018. "A dynamic lot-sizing-based profit maximization discounted cash flow model considering working capital requirement financing cost with infinite production capacity," International Journal of Production Economics, Elsevier, vol. 196(C), pages 319-332.
    18. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    20. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:5:p:679-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.