IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1101-d102441.html
   My bibliography  Save this article

Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains

Author

Listed:
  • Akito Ozawa

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Mai Inoue

    (Leave a Nest Co., Ltd., Tokyo Head Office Institute of Innovation & Knowledge (I2K), 4F/5F Iidabashi-Miyuki Bldg 1-4 Shimomiyabi-cho, Shinjuku-ku, Tokyo 162-0822, Japan)

  • Naomi Kitagawa

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Ryoji Muramatsu

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Yurie Anzai

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Yutaka Genchi

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

  • Yuki Kudoh

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan)

Abstract

Hydrogen is a promising energy carrier in the clean energy systems currently being developed. However, its effectiveness in mitigating greenhouse gas (GHG) emissions requires conducting a lifecycle analysis of the process by which hydrogen is produced and supplied. This study focuses on the hydrogen for the transport sector, in particular renewable hydrogen that is produced from wind- or solar PV-powered electrolysis. A life cycle inventory analysis is conducted to evaluate the Well-to-Tank (WtT) GHG emissions from various renewable hydrogen supply chains. The stages of the supply chains include hydrogen being produced overseas, converted into a transportable hydrogen carrier (liquid hydrogen or methylcyclohexane), imported to Japan by sea, distributed to hydrogen filling stations, restored from the hydrogen carrier to hydrogen and filled into fuel cell vehicles. For comparison, an analysis is also carried out with hydrogen produced by steam reforming of natural gas. Foreground data related to the hydrogen supply chains are collected by literature surveys and the Japanese life cycle inventory database is used as the background data. The analysis results indicate that some of renewable hydrogen supply chains using liquid hydrogen exhibited significantly lower WtT GHG emissions than those of a supply chain of hydrogen produced by reforming of natural gas. A significant piece of the work is to consider the impacts of variations in the energy and material inputs by performing a probabilistic uncertainty analysis. This suggests that the production of renewable hydrogen, its liquefaction, the dehydrogenation of methylcyclohexane and the compression of hydrogen at the filling station are the GHG-intensive stages in the target supply chains.

Suggested Citation

  • Akito Ozawa & Mai Inoue & Naomi Kitagawa & Ryoji Muramatsu & Yurie Anzai & Yutaka Genchi & Yuki Kudoh, 2017. "Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1101-:d:102441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nirmal V. Gnanapragasam & Bale V. Reddy & Marc A. Rosen, 2010. "A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels," Sustainability, MDPI, vol. 2(6), pages 1-20, May.
    2. Eric D. Williams & Christopher L. Weber & Troy R. Hawkins, 2009. "Hybrid Framework for Managing Uncertainty in Life Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 928-944, December.
    3. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Marco Trapanese, 2017. "Energy Saving in Public Transport Using Renewable Energy," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    4. Milena Stefanova & Concetta Tripepi & Alessandra Zamagni & Paolo Masoni, 2014. "Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass," Sustainability, MDPI, vol. 6(8), pages 1-13, August.
    5. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrshad Kolahchian Tabrizi & Jacopo Famiglietti & Davide Bonalumi & Stefano Campanari, 2023. "The Carbon Footprint of Hydrogen Produced with State-of-the-Art Photovoltaic Electricity Using Life-Cycle Assessment Methodology," Energies, MDPI, vol. 16(13), pages 1-25, July.
    2. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    3. White, Lee V. & Fazeli, Reza & Cheng, Wenting & Aisbett, Emma & Beck, Fiona J. & Baldwin, Kenneth G.H. & Howarth, Penelope & O’Neill, Lily, 2021. "Towards emissions certification systems for international trade in hydrogen: The policy challenge of defining boundaries for emissions accounting," Energy, Elsevier, vol. 215(PA).
    4. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    5. Christina Wulf & Martin Kaltschmitt, 2018. "Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    6. Wenyi Du & Yubing Fan & Lina Yan, 2018. "Pricing Strategies for Competitive Water Supply Chains under Different Power Structures: An Application to the South-to-North Water Diversion Project in China," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    7. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    8. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
    9. Akito Ozawa & Yuki Kudoh, 2021. "Assessing Uncertainties of Life-Cycle CO 2 Emissions Using Hydrogen Energy for Power Generation," Energies, MDPI, vol. 14(21), pages 1-23, October.
    10. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    2. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    3. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    4. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    5. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    6. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    7. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
    8. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    9. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    10. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    11. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    12. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    13. Kwan, T.H. & Shen, Y. & Pei, G., 2021. "Recycling fuel cell waste heat to the thermoelectric cooler for enhanced combined heat, power and water production," Energy, Elsevier, vol. 223(C).
    14. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    15. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    16. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    18. Artur Czech & Jerzy Lewczuk & Leonas Ustinovichius & Robertas Kontrimovičius, 2022. "Multi-Criteria Assessment of Transport Sustainability in Chosen European Union Countries: A Dynamic Approach," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    19. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    20. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2016. "Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options," Energy, Elsevier, vol. 112(C), pages 715-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1101-:d:102441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.