IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p912-d100174.html
   My bibliography  Save this article

Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from China

Author

Listed:
  • Weixin Yang

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Lingguang Li

    (School of Mathematical Sciences, Tongji University, Shanghai 200092, China)

Abstract

Low energy efficiency and severe environmental pollution are two growing issues haunting China’s fast economic development. Under China’s current development model, economic growth still heavily depends on massive energy input, which makes energy efficiency one crucial topic in order to secure future sustainable development of China. This paper focuses on the unique energy ownership structure of China, and designs and adopts MATLAB programming for optimization solutions of multi-variable constrained nonlinear functions to obtain results that can better reflect China’s energy efficiency and solutions to sustainable development of China. Using this model, this paper conducts an empirical analysis on the impact of difference energy investment behaviors between China’s state-owned entities and non-state-owned business on China’s Total Factor Energy Efficiency (TFEE) and sustainable development from 2003 to 2014. We find that Beijing and Shanghai represent the highest energy efficiency level in China. However, except for the more developed regions in Eastern China, for other provinces in Northeast China, Central China and Western China, the TFEE of energy investment by state-owned and non-state-owned economies are both quite low compared with the optimal level. Based on the above findings from the empirical study and detailed analysis by region, this paper discusses the possible reasons for China’s low TFEE and provides implications and policy recommendations.

Suggested Citation

  • Weixin Yang & Lingguang Li, 2017. "Energy Efficiency, Ownership Structure, and Sustainable Development: Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:912-:d:100174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Birol, Fatih & Keppler, Jan Horst, 2000. "Prices, technology development and the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 457-469, June.
    2. Mehrara, Mohsen, 2007. "Energy consumption and economic growth: The case of oil exporting countries," Energy Policy, Elsevier, vol. 35(5), pages 2939-2945, May.
    3. Zhang, Jin & Xu, Linyu & Yu, Bing & Li, Xiaojin, 2014. "Environmentally feasible potential for hydropower development regarding environmental constraints," Energy Policy, Elsevier, vol. 73(C), pages 552-562.
    4. Shiyi Chen & Shujian Zhang, 2014. "Large-Scale Land Use for Construction and Energy Consumption after the New Millennium with Their Impact on Total-Factor Efficiency Change in China’s Regional Economy," Energies, MDPI, vol. 7(4), pages 1-18, March.
    5. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    6. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    7. repec:dau:papers:123456789/10972 is not listed on IDEAS
    8. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    9. Anderson, Dennis & Cavendish, William, 2001. "Dynamic Simulation and Environmental Policy Analysis: Beyond Comparative Statistics and the Environmental Kuznets Curve," Oxford Economic Papers, Oxford University Press, vol. 53(4), pages 721-746, October.
    10. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    11. Chang, Ming-Chung, 2013. "A comment on the calculation of the total-factor energy efficiency (TFEE) index," Energy Policy, Elsevier, vol. 53(C), pages 500-504.
    12. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    13. Lantz, V. & Feng, Q., 2006. "Assessing income, population, and technology impacts on CO2 emissions in Canada: Where's the EKC?," Ecological Economics, Elsevier, vol. 57(2), pages 229-238, May.
    14. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    15. Saunders, Harry D., 2000. "Does predicted rebound depend on distinguishing between energy and energy services?," Energy Policy, Elsevier, vol. 28(6-7), pages 497-500, June.
    16. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    17. Pao, Hsiao-Tien & Li, Yi-Ying & Hsin-Chia Fu,, 2014. "Clean energy, non-clean energy, and economic growth in the MIST countries," Energy Policy, Elsevier, vol. 67(C), pages 932-942.
    18. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    19. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixin Yang & Lingguang Li, 2017. "Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model," Sustainability, MDPI, vol. 9(8), pages 1-21, July.
    2. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    3. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    4. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    5. Shuangjie Li & Li Li & Liming Wang, 2020. "2030 Target for Energy Efficiency and Emission Reduction in the EU Paper Industry," Energies, MDPI, vol. 14(1), pages 1-17, December.
    6. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    7. Turner, Karen & Hanley, Nick, 2011. "Energy efficiency, rebound effects and the environmental Kuznets Curve," Energy Economics, Elsevier, vol. 33(5), pages 709-720, September.
    8. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    9. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    10. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    11. Ying-yu Lu & Yue He & Bo Wang & Shuang-shuang Ye & Yidi Hua & Lei Ding, 2019. "Efficiency Evaluation of Atmospheric Pollutants Emission in Zhejiang Province China: A DEA-Malmquist Based Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    12. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    13. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    14. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    15. Shih-Heng Yu & Yu Gao & Yih-Chearng Shiue, 2017. "A Comprehensive Evaluation of Sustainable Development Ability and Pathway for Major Cities in China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    16. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    17. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    18. Shujing Yue & Yang Yang & Jun Shao & Yuting Zhu, 2016. "International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013," Sustainability, MDPI, vol. 8(11), pages 1-13, November.
    19. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    20. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:912-:d:100174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.