IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p610-d72979.html
   My bibliography  Save this article

Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas

Author

Listed:
  • Elisa Pennacchia

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Mariagrazia Tiberi

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Elisa Carbonara

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Davide Astiaso Garcia

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy)

  • Fabrizio Cumo

    (Department of Planning, Design, and Technology of Architecture (DPDTA), Sapienza University of Rome, Via Flaminia 72, Rome 00196, Italy)

Abstract

Building energy efficiency and urban waste management are two focal issues for improving environmental status and reducing greenhouse gas emissions. The main aim of this paper is to compare economic costs of new building envelope structures designed by authors reusing and upcycling municipal waste in order to decrease energy demand from the building sector and, at the same time, improve eco-friendly waste management at the local scale. The reuse of waste for building envelope structures is one of the main principles of the Earthship buildings model, based on the use of passive solar principles in autonomous earth-sheltered homes. This Earthship principle has been analyzed in order to optimize buildings’ energy performance and reuse municipal waste for new building envelope structures in urban areas. Indeed, the elaborated structures have been designed for urban contexts, with the aim of reuse waste coming from surrounding landfills. The methods include an analysis of thermal performance of urban waste for designing new building envelope structures realized by assembling waste and isolating materials not foreseen in Earthship buildings. The reused materials are: cardboard tubes, automobile tires, wood pallets, and plastic and glass bottles. Finally, comparing economic costs of these new building envelope structures, the obtained results highlight their economic feasibility compared to a traditional structure with similar thermal transmittance.

Suggested Citation

  • Elisa Pennacchia & Mariagrazia Tiberi & Elisa Carbonara & Davide Astiaso Garcia & Fabrizio Cumo, 2016. "Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas," Sustainability, MDPI, vol. 8(7), pages 1-11, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:610-:d:72979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Santoli, Livio & Lo Basso, Gianluigi & Bruschi, Daniele, 2013. "Energy characterization of CHP (combined heat and power) fuelled with hydrogen enriched natural gas blends," Energy, Elsevier, vol. 60(C), pages 13-22.
    2. Panagiotidou, Maria & Fuller, Robert J., 2013. "Progress in ZEBs—A review of definitions, policies and construction activity," Energy Policy, Elsevier, vol. 62(C), pages 196-206.
    3. Chiara Burattini & Fabio Nardecchia & Fabio Bisegna & Lucia Cellucci & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Methodological Approach to the Energy Analysis of Unconstrained Historical Buildings," Sustainability, MDPI, vol. 7(8), pages 1-17, August.
    4. Francesca Pagliaro & Lucia Cellucci & Chiara Burattini & Fabio Bisegna & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "A Methodological Comparison between Energy and Environmental Performance Evaluation," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    5. Grindley, P.C. & Hutchinson, M., 1996. "The thermal behaviours of an earthship," Renewable Energy, Elsevier, vol. 8(1), pages 154-159.
    6. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    7. Davide Astiaso Garcia & Umberto Di Matteo & Fabrizio Cumo, 2015. "Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
    8. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonghyuk Kim & Hyunwoo Hwangbo, 2019. "Real-Time Early Warning System for Sustainable and Intelligent Plastic Film Manufacturing," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    2. Kyungeun Sung & Tim Cooper & Sarah Kettley, 2019. "Developing Interventions for Scaling Up UK Upcycling," Energies, MDPI, vol. 12(14), pages 1-31, July.
    3. Beatrice Castellani & Elena Morini & Benedetto Nastasi & Andrea Nicolini & Federico Rossi, 2018. "Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building," Energies, MDPI, vol. 11(7), pages 1-15, July.
    4. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    2. Davide Astiaso Garcia & Fabrizio Cumo & Mariagrazia Tiberi & Valentina Sforzini & Giuseppe Piras, 2016. "Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies," Energies, MDPI, vol. 9(7), pages 1-17, July.
    3. Felipe Encinas & Carlos Aguirre & Carlos Marmolejo-Duarte, 2018. "Sustainability Attributes in Real Estate Development: Private Perspectives on Advancing Energy Regulation in a Liberalized Market," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    4. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    5. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Gabriele Curci & Massimo Coppi & Ferdinando Salata, 2018. "Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy)," Energies, MDPI, vol. 11(10), pages 1-17, October.
    6. Giacomo Salvadori & Fabio Fantozzi & Michele Rocca & Francesco Leccese, 2016. "The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings," Energies, MDPI, vol. 9(12), pages 1-13, November.
    7. Fabio Nardecchia & Benedetta Mattoni & Francesca Pagliaro & Lucia Cellucci & Fabio Bisegna & Franco Gugliermetti, 2016. "Computational Fluid Dynamic Modelling of Thermal Periodic Stabilized Regime in Passive Buildings," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    8. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    9. Andrea Urbinati & Davide Chiaroni & Paolo Maccarrone & Antonio Messeni Petruzzelli & Federico Frattini, 2022. "A multidimensional scorecard of KPIs for retrofit measures of buildings: A systematic literature review," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(6), pages 1968-1979, November.
    10. Sorgulu, Fatih & Dincer, Ibrahim, 2021. "Development of a hythane based cogeneration system integrated with gasification and landfill subsystems," Energy, Elsevier, vol. 215(PA).
    11. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    12. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    13. Nicholas Preston & Azadeh Maroufmashat & Hassan Riaz & Sami Barbouti & Ushnik Mukherjee & Peter Tang & Javan Wang & Ali Elkamel & Michael Fowler, 2021. "An Economic, Environmental and Safety Analysis of Using Hydrogen Enriched Natural Gas (HENG) in Industrial Facilities," Energies, MDPI, vol. 14(9), pages 1-21, April.
    14. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    15. Coline Senior & Alenka Temeljotov Salaj & Milena Vukmirovic & Mina Jowkar & Živa Kristl, 2021. "The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings," Energies, MDPI, vol. 14(13), pages 1-27, July.
    16. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. de Santoli, Livio & Paiolo, Romano & Lo Basso, Gianluigi, 2020. "Energy-environmental experimental campaign on a commercial CHP fueled with H2NG blends and oxygen enriched air hailing from on-site electrolysis," Energy, Elsevier, vol. 195(C).
    18. Tappen, S.J. & Aschmann, V. & Effenberger, M., 2017. "Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units," Renewable Energy, Elsevier, vol. 114(PB), pages 857-865.
    19. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    20. Wenelska, Karolina & Michalkiewicz, Beata & Chen, Xuecheng & Mijowska, Ewa, 2014. "Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity," Energy, Elsevier, vol. 75(C), pages 549-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:610-:d:72979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.