IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp1355-1367.html
   My bibliography  Save this article

Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines

Author

Listed:
  • Shaterabadi, Mohammad
  • Jirdehi, Mehdi Ahmadi
  • Amiri, Nima
  • Omidi, Sina

Abstract

A multi-objective energy management strategy for a plus-zero energy building during a year, incorporating renewable resources, air to water heat pump, micro-CHP, ventilation, energy storage systems and thermal-cooling-electrical loads have been proposed in this paper. In this strategy, a novel technology of wind turbine that has been known as INVELOX has been investigated and collaborated in ZEB planning to reach efficient plus-ZEB at lower cost and pollution. As well the building can sell and buy power to/from the upstream network. The total cost and pollution of the building have been considered as objective functions. Also, the effect of objective function priority on the planning of the building has considered. To make the results more realistic the wind speed and solar radiation of Kermanshah city in Iran have been used. The presented problem has modeled as a mixed-integer linear programming and the Epsilon constraint method and fuzzy satisfying approach have been used to solve and obtain the best solution. The final results show reducing the total cost and pollution by about 34.6% and 51.2% in cost priority, also 28.7% and 54.7% in pollution priority respectively, also increment in surplus power to sell to the grid and getting closer to reach plus-ZEB concept.

Suggested Citation

  • Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1355-1367
    DOI: 10.1016/j.renene.2020.02.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allaei, Daryoush & Tarnowski, David & Andreopoulos, Yiannis, 2015. "INVELOX with multiple wind turbine generator systems," Energy, Elsevier, vol. 93(P1), pages 1030-1040.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    4. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    5. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    6. Zeiler, Wim & Boxem, Gert, 2013. "Net-zero energy building schools," Renewable Energy, Elsevier, vol. 49(C), pages 282-286.
    7. Zhou, Zhihua & Feng, Lei & Zhang, Shuzhen & Wang, Chendong & Chen, Guanyi & Du, Tao & Li, Yasong & Zuo, Jian, 2016. "The operational performance of “net zero energy building”: A study in China," Applied Energy, Elsevier, vol. 177(C), pages 716-728.
    8. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    9. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    10. Forwood, Bruce, 1994. "Expressing “sustainablity” in architectural form: Energy and environment as architectural metaphors," Renewable Energy, Elsevier, vol. 5(5), pages 1132-1134.
    11. Panagiotidou, Maria & Fuller, Robert J., 2013. "Progress in ZEBs—A review of definitions, policies and construction activity," Energy Policy, Elsevier, vol. 62(C), pages 196-206.
    12. Mohamed, Ayman & Hamdy, Mohamed & Hasan, Ala & Sirén, Kai, 2015. "The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions," Applied Energy, Elsevier, vol. 152(C), pages 94-108.
    13. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    14. Muhammad Babar Rasheed & Nadeem Javaid & Muhammad Awais & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh & Zafar Iqbal & Qaisar Javaid, 2016. "Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes," Energies, MDPI, vol. 9(7), pages 1-30, July.
    15. Mateus, Ricardo & Silva, Sandra Monteiro & de Almeida, Manuela Guedes, 2019. "Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings," Renewable Energy, Elsevier, vol. 137(C), pages 82-92.
    16. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    17. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    18. Allaei, Daryoush & Andreopoulos, Yiannis, 2014. "INVELOX: Description of a new concept in wind power and its performance evaluation," Energy, Elsevier, vol. 69(C), pages 336-344.
    19. Sharma, Pooja & Kolhe, Mohan & Sharma, Arvind, 2020. "Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints," Renewable Energy, Elsevier, vol. 145(C), pages 1901-1909.
    20. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    21. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi, 2020. "Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines," Renewable Energy, Elsevier, vol. 145(C), pages 2754-2769.
    22. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Mancò & Elisa Guelpa & Alessandro Colangelo & Alessandro Virtuani & Tommaso Morbiato & Vittorio Verda, 2021. "Innovative Renewable Technology Integration for Nearly Zero-Energy Buildings within the Re-COGNITION Project," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    2. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    3. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    4. Gokula Manikandan Senthil Kumar & Sunliang Cao, 2021. "State-of-the-Art Review of Positive Energy Building and Community Systems," Energies, MDPI, vol. 14(16), pages 1-54, August.
    5. Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Ahmadi Jirdehi & Mohammad Shaterabadi, 2021. "A low‐carbon strategy using INVELOX turbines in the presence of real‐time energy price uncertainty," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 461-482, June.
    2. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    3. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    4. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    5. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    6. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    7. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    8. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    9. Nardecchia, Fabio & Groppi, Daniele & Astiaso Garcia, Davide & Bisegna, Fabio & de Santoli, Livio, 2021. "A new concept for a mini ducted wind turbine system," Renewable Energy, Elsevier, vol. 175(C), pages 610-624.
    10. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    11. Sotoudeh, Freshteh & Kamali, Reza & Mousavi, Seyed Mahmood, 2019. "Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region," Energy, Elsevier, vol. 181(C), pages 745-759.
    12. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    13. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    14. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    15. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    16. Meratizaman, Mousa & Nateqi, Mojtaba, 2021. "Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the Conventional Horizontal Axis Wind Turbine?," Energy, Elsevier, vol. 217(C).
    17. Hosseinnia, Hamed & Modarresi, Javad & Nazarpour, Daryoush, 2020. "Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program," Energy, Elsevier, vol. 191(C).
    18. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    19. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    20. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1355-1367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.