IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp610-624.html
   My bibliography  Save this article

A new concept for a mini ducted wind turbine system

Author

Listed:
  • Nardecchia, Fabio
  • Groppi, Daniele
  • Astiaso Garcia, Davide
  • Bisegna, Fabio
  • de Santoli, Livio

Abstract

Wind energy is foreseen to represent one of the most important drivers in the transition to a clean energy system. On one hand, the major trend is to increase the turbines’ height and rotor size so as to improve the economy of scale. On the other hand, another approach that is receiving large interest is the so-called Ducted Wind Turbines that allows to significantly improve the turbines performance with reduced dimensions aiming at designing systems that could be integrated in the urban environment. This paper studies the optimal configuration of a mini- Ducted Wind Turbine by analysing, through numerical simulation and critical discussions, several different configurations varying the most critical geometric features of the system. The impact of such changes is analysed at varying wind speed and direction so as to also test the omnidirectionality of the system. Results of the final model are then compared with a similar turbine installed in open field showing that thanks to the mini Ducted Wind Turbine system is possible to exploit up to 432% more energy than a traditional system. Nevertheless, the final system still does not present a full omnidirectionality as it experiences an inversion of flux for wind directions that are contrary to the turbine axis. Finally the numerical simulations have been validated through the wind tunnel tests. The results show that for low air velocity 5–6 m/s, there is a perfect correspondence between the numerical and experimental values and the relative percentage difference between the two methods is less than 1%.

Suggested Citation

  • Nardecchia, Fabio & Groppi, Daniele & Astiaso Garcia, Davide & Bisegna, Fabio & de Santoli, Livio, 2021. "A new concept for a mini ducted wind turbine system," Renewable Energy, Elsevier, vol. 175(C), pages 610-624.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:610-624
    DOI: 10.1016/j.renene.2021.04.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allaei, Daryoush & Tarnowski, David & Andreopoulos, Yiannis, 2015. "INVELOX with multiple wind turbine generator systems," Energy, Elsevier, vol. 93(P1), pages 1030-1040.
    2. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    3. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    4. Rusu, Eugen, 2019. "A 30-year projection of the future wind energy resources in the coastal environment of the Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 228-234.
    5. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    6. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    7. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    9. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
    10. Garcia-Saez, Irene & Méndez, Juan & Ortiz, Carlos & Loncar, Drazen & Becerra, José A. & Chacartegui, Ricardo, 2019. "Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications," Renewable Energy, Elsevier, vol. 140(C), pages 461-476.
    11. Espécie, Mariana de Assis & de Carvalho, Pedro Ninô & Pinheiro, Maria Fernanda Bacile & Rosenthal, Vinicius Mesquita & da Silva, Leyla A. Ferreira & Pinheiro, Mariana Rodrigues de Carvalhaes & Espig, , 2019. "Ecosystem services and renewable power generation: A preliminary literature review," Renewable Energy, Elsevier, vol. 140(C), pages 39-51.
    12. Johnsson, Filip & Karlsson, Ida & Rootzén, Johan & Ahlbäck, Anders & Gustavsson, Mathias, 2020. "The framing of a sustainable development goals assessment in decarbonizing the construction industry – Avoiding “Greenwashing”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    14. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Grant, Andrew & Johnstone, Cameron & Kelly, Nick, 2008. "Urban wind energy conversion: The potential of ducted turbines," Renewable Energy, Elsevier, vol. 33(6), pages 1157-1163.
    17. Rivarolo, M. & Freda, A. & Traverso, A., 2020. "Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence," Applied Energy, Elsevier, vol. 279(C).
    18. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    19. Boyle, James & Littler, Timothy & Foley, Aoife, 2020. "Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1119-1135.
    20. Avallone, Francesco & Ragni, Daniele & Casalino, Damiano, 2020. "On the effect of the tip-clearance ratio on the aeroacoustics of a diffuser-augmented wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 1317-1327.
    21. Allaei, Daryoush & Andreopoulos, Yiannis, 2014. "INVELOX: Description of a new concept in wind power and its performance evaluation," Energy, Elsevier, vol. 69(C), pages 336-344.
    22. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
    23. Bet, F & Grassmann, H, 2003. "Upgrading conventional wind turbines," Renewable Energy, Elsevier, vol. 28(1), pages 71-78.
    24. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    25. Matsushima, Toshio & Takagi, Shinya & Muroyama, Seiichi, 2006. "Characteristics of a highly efficient propeller type small wind turbine with a diffuser," Renewable Energy, Elsevier, vol. 31(9), pages 1343-1354.
    26. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    3. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    2. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    3. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    4. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    5. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    8. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    9. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    10. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    11. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    12. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    13. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    14. Sotoudeh, Freshteh & Kamali, Reza & Mousavi, Seyed Mahmood, 2019. "Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region," Energy, Elsevier, vol. 181(C), pages 745-759.
    15. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    16. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    17. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    18. Meratizaman, Mousa & Nateqi, Mojtaba, 2021. "Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the Conventional Horizontal Axis Wind Turbine?," Energy, Elsevier, vol. 217(C).
    19. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    20. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:610-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.