IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i11p14729-14744d58263.html
   My bibliography  Save this article

The Response of Grain Potential Productivity to Land Use Change: A Case Study in Western Jilin, China

Author

Listed:
  • Fei Li

    (College of Earth Science, Jilin University, Changchun 130012, China)

  • Shuwen Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Xinliang Xu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Jiuchun Yang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Qing Wang

    (College of Earth Science, Jilin University, Changchun 130012, China)

  • Kun Bu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Liping Chang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

The impact of land use change on grain potential productivity is one of the most important topics in the research of land use/cover change and its effects. Western Jilin, located on the edge of an ecotone in northern China, and its land use have changed dramatically in recent decades, with significant impact on grain potential productivity. This study evaluated the grain potential productivity in different conditions and analyzed the response to land use change based on land use data, meteorological data and statistical data by using the Global Agro-ecological Zone model. Results showed that (1) grain potential productivity of Western Jilin in 2010 was 19.12 million tons, an increase of 34.8% over 1975 because of changes in land use and in climate; (2) due to land use change, grain potential productivity in the study area increased between 1975 and 2000, however, it decreased between 2000 and 2010; (3) conversion in type of land use and an increase in irrigation percentage caused grain potential productivity to increase by 0.70 million tons and 3.13 million tons respectively between 1975 and 2000; between 2000 and 2010, grain potential productivity had an increase of 0.17 million tons due to the increase in farmland area, but it decreased by 1.88 million tons because the irrigation percentage declined from 36.6% to 24.7%. Therefore, increasing investment in agriculture, improving land quality and increasing the conversion rate of grain potential productivity to actual production would be a better choice for ensuring national food security and achieving sustainable land use.

Suggested Citation

  • Fei Li & Shuwen Zhang & Xinliang Xu & Jiuchun Yang & Qing Wang & Kun Bu & Liping Chang, 2015. "The Response of Grain Potential Productivity to Land Use Change: A Case Study in Western Jilin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:14729-14744:d:58263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/11/14729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/11/14729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zhouyuan & Liu, Xuehua & Ma, Tianxiao & Kejia, De & Zhou, Qingping & Yao, Bingquan & Niu, Tianlin, 2013. "Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China," Ecological Modelling, Elsevier, vol. 270(C), pages 64-75.
    2. Mendoza-González, G. & Martínez, M.L. & Lithgow, D. & Pérez-Maqueo, O. & Simonin, P., 2012. "Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico," Ecological Economics, Elsevier, vol. 82(C), pages 23-32.
    3. Yun, Jin I., 2003. "Predicting regional rice production in South Korea using spatial data and crop-growth modeling," Agricultural Systems, Elsevier, vol. 77(1), pages 23-38, July.
    4. Basso, B. & Ritchie, J. T. & Pierce, F. J. & Braga, R. P. & Jones, J. W., 2001. "Spatial validation of crop models for precision agriculture," Agricultural Systems, Elsevier, vol. 68(2), pages 97-112, May.
    5. Jennifer Alix-Garcia & Anne Bartlett & David Saah, 2013. "The landscape of conflict: IDPs, aid and land-use change in Darfur," Journal of Economic Geography, Oxford University Press, vol. 13(4), pages 589-617, July.
    6. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    3. Luoman Pu & Shuwen Zhang & Fei Li & Ranghu Wang & Jiuchun Yang & Liping Chang, 2018. "Impact of Farmland Change on Soybean Production Potential in Recent 40 Years: A Case Study in Western Jilin, China," IJERPH, MDPI, vol. 15(7), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guibor Camargo & Andrés Miguel Sampayo & Andrés Peña Galindo & Francisco J Escobedo & Fernando Carriazo & Alejandro Feged-Rivadeneira, 2020. "Exploring the dynamics of migration, armed conflict, urbanization, and anthropogenic change in Colombia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    2. Danjie Shen & Shujing Dong, 2022. "Transition of Urban Morphology in the Mountainous Areas Since Early-Modern Times from the Perspective of Urban Historic Landscape—A GIS Tools and Historical Map Translation Approach," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    3. Bo Liu & Desheng Xue & Yiming Tan, 2019. "Deciphering the Manufacturing Production Space in Global City-Regions of Developing Countries—a Case of Pearl River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-26, December.
    4. Aysun Aygun & Murat Guray Kirdar & Berna Tuncay, 2020. "The Effect of Hosting 3.4 Million Refugees on the Health System in Turkey and Infant, Child, and Elderly Mortality among Natives," Koç University-TUSIAD Economic Research Forum Working Papers 2014, Koc University-TUSIAD Economic Research Forum.
    5. Katrina Raynor & Severine Mayere & Tony Matthews, 2018. "Do ‘city shapers’ really support urban consolidation? The case of Brisbane, Australia," Urban Studies, Urban Studies Journal Limited, vol. 55(5), pages 1056-1075, April.
    6. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    7. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    8. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    9. Souche, Stéphanie, 2009. "Un exemple d’estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Editions NecPlus, vol. 2009(04), pages 759-779, December.
    10. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    11. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    12. Junhua Chen & Shufan Ma & Na Liu, 2023. "Multi-dimensional Housing Inequality Index: The Provincial Evidence from China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(2), pages 633-654, January.
    13. Przemysław Śleszyński & Adam Kowalewski & Tadeusz Markowski & Paulina Legutko-Kobus & Maciej Nowak, 2020. "The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland," Land, MDPI, vol. 9(7), pages 1-28, July.
    14. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    15. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    16. Yu Song & Guofan Shao & Xiaodong Song & Yong Liu & Lei Pan & Hong Ye, 2017. "The Relationships between Urban Form and Urban Commuting: An Empirical Study in China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    17. Jean-François Maystadt & Valerie Mueller & Ashwini Sebastian, 2016. "Environmental Migration and Labor Markets in Nepal," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 417-452.
    18. Liqin Zhang & Ruibo Han & Huhua Cao, 2021. "Understanding Urban Land Growth through a Social-Spatial Perspective," Land, MDPI, vol. 10(4), pages 1-23, March.
    19. Brummett, Randall E. & Gockowski, James & Pouomogne, Victor & Muir, James, 2011. "Targeting agricultural research and extension for food security and poverty alleviation: A case study of fish farming in Central Cameroon," Food Policy, Elsevier, vol. 36(6), pages 805-814.
    20. Jinglun Peng & Moonju Kim & Kyungil Sung, 2020. "Yield Prediction Modeling for Sorghum–Sudangrass Hybrid Based on Climatic, Soil, and Cultivar Data in the Republic of Korea," Agriculture, MDPI, vol. 10(4), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:11:p:14729-14744:d:58263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.