IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4129-d1079390.html
   My bibliography  Save this article

Comprehensive Benefit of Crop Straw Return Volume under Sustainable Development Management Concept in Heilongjiang, China

Author

Listed:
  • Jia Mao

    (School of Transportation, Jilin University, Changchun 130012, China)

  • Ziang Zhao

    (School of Transportation, Jilin University, Changchun 130012, China)

  • Xiangyu Li

    (College of Automotive Engineering, Jilin University, Changchun 130012, China)

  • Honggang Zhao

    (College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China)

  • Ciyun Lin

    (School of Transportation, Jilin University, Changchun 130012, China)

Abstract

Straw burning can cause serious environmental pollution, whereas returning straw to the fields, as a green production method, can improve the rural environment and strengthen the sustainable development of agriculture. According to statistics, China produced 797 million tons of straw in 2020, but the current straw return technology still needs to be improved; the ability of farmers to choose the correct amount of straw to be returned to the field and their awareness of environmental protection still need to be strengthened. Straw is still openly burned in some areas, causing environmental pollution and the waste of resources, which are contrary to the concept of sustainable development in China. In this study, we estimated the amount of straw resources in Heilongjiang Province, a major grain-producing province in China, by quantifying the production of major crops between 2011 and 2020. We then identified and analyzed the current problems in terms of policy support and other aspects. We used an integrated AHP-fuzzy evaluation method to evaluate the comprehensive benefits of different straw return amounts, and we determined the amount of straw that should be returned to the soil to produce the best comprehensive benefits. We provide suggestions for the current main problems regarding the amount of crop straw to return to the soil in Heilongjiang Province, arguing that choosing a reasonable straw return amount will help farmers increase profit, reduce environmental pollution, and contribute to the sustainable development of the environment.

Suggested Citation

  • Jia Mao & Ziang Zhao & Xiangyu Li & Honggang Zhao & Ciyun Lin, 2023. "Comprehensive Benefit of Crop Straw Return Volume under Sustainable Development Management Concept in Heilongjiang, China," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4129-:d:1079390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Rasul, Golam & Thapa, Gopal B., 2004. "Sustainability of ecological and conventional agricultural systems in Bangladesh: an assessment based on environmental, economic and social perspectives," Agricultural Systems, Elsevier, vol. 79(3), pages 327-351, March.
    4. Han Lin & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenchao Yang & Shenghai Huang & Peng Liu & Yongbin Chang, 2022. "Design and Experiment of a Reciprocating Intermittent Chopping Device for Maize Straw Returning," Agriculture, MDPI, vol. 12(2), pages 1-23, February.
    5. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    6. Zhu, Ke-Jun & Jing, Yu & Chang, Da-Yong, 1999. "A discussion on Extent Analysis Method and applications of fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 116(2), pages 450-456, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Luo & Dianpeng Chen & Xiaoguo Wang, 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamvysi, Konstantina & Gotzamani, Katerina & Andronikidis, Andreas & Georgiou, Andreas C., 2014. "Capturing and prioritizing students’ requirements for course design by embedding Fuzzy-AHP and linear programming in QFD," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1083-1094.
    2. Kamvysi, Konstantina & Andronikidis, Andreas & Georgiou, Andreas C. & Gotzamani, Katerina, 2023. "A quality function deployment framework for service strategy planning," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    3. D. Bajić & D. Polomčić & J. Ratković, 2017. "Multi-Criteria Decision Analysis for the Purposes of Groundwater Control System Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4759-4784, December.
    4. Vecihi Yiğit & Nazlı Nisa Demir & Hisham Alidrisi & Mehmet Emin Aydin, 2020. "Elicitation of the Factors Affecting Electricity Distribution Efficiency Using the Fuzzy AHP Method," Mathematics, MDPI, vol. 9(1), pages 1-25, December.
    5. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    6. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    7. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    10. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    11. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    12. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    13. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    14. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    15. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    16. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    17. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    18. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    19. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    20. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4129-:d:1079390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.