IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2835-d1057478.html
   My bibliography  Save this article

Microgrid Robust Planning Model and Its Modification Strategy Based on Improved Grey Relational Theory

Author

Listed:
  • Jiayin Xu

    (Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China)

  • Xu Gui

    (Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China)

  • Kun Li

    (Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China)

  • Guifen Jiang

    (Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China)

  • Tao Wang

    (Economic and Technology Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China)

  • Zhen Xu

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

Abstract

A two-stage robust planning model is constructed in this paper, which can reduce the joint planning uncertainty of a wind-photovoltaic-energy storage system caused by the stochastic characteristics of renewable energy and ensure the sustainability of the power grid. Considering the life loss of energy storage system comprehensively, the joint planning is realized in the worst scenario. Addressing the problem that subjective and uniform robustness parameters in robust optimization cannot cope with the differentiated characteristics of each uncertainty, a robust microgrid-planning model and its modification strategy based on improved grey relational theory are proposed. The idea of weight distribution and dynamic value of identification coefficients are introduced into grey relational theory, so as to enhance the weight of indicators that influence planning and the relational degree between them, which can avoid the locally relational tendency. According to the relation degree, the renewable energy’s robustness parameters are modified to improve the applicability and flexibility of the microgrid-planning results. Finally, the effectiveness and superiority of the proposed theory and method are verified using a case study approach.

Suggested Citation

  • Jiayin Xu & Xu Gui & Kun Li & Guifen Jiang & Tao Wang & Zhen Xu, 2023. "Microgrid Robust Planning Model and Its Modification Strategy Based on Improved Grey Relational Theory," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2835-:d:1057478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Wang, Zhaoxia & Zhu, Han & Ding, Yan & Zhu, Tianli & Zhu, Neng & Tian, Zhe, 2018. "Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system," Energy, Elsevier, vol. 153(C), pages 65-79.
    3. Kashish Kumar & Alok Singh, 2022. "Economic and Experimental Assessment of KCOOH Hybrid Liquid Desiccant-Vapor Compression System," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    4. Rezaei, Navid & Khazali, Amirhossein & Mazidi, Mohammadreza & Ahmadi, Abdollah, 2020. "Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: A robust optimization approach," Energy, Elsevier, vol. 201(C).
    5. Saboori, Behnaz & Gholipour, Hassan F. & Rasoulinezhad, Ehsan & Ranjbar, Omid, 2022. "Renewable energy sources and unemployment rate: Evidence from the US states," Energy Policy, Elsevier, vol. 168(C).
    6. Sarraf, Fatemeh & Nejad, Shabnam Hashemi, 2020. "Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: Case study in water and wastewater companies," Evaluation and Program Planning, Elsevier, vol. 79(C).
    7. Ehsan Javanmardi & Sifeng Liu & Naiming Xie, 2020. "Exploring Grey Systems Theory-Based Methods and Applications in Sustainability Studies: A Systematic Review Approach," Sustainability, MDPI, vol. 12(11), pages 1-32, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    2. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    3. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    4. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    5. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    6. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    7. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    8. Ge, Yongbo & Zhu, Yuexiao, 2022. "Boosting green recovery: Green credit policy in heavily polluted industries and stock price crash risk," Resources Policy, Elsevier, vol. 79(C).
    9. Bahman Huseynli, 2023. "Effect of Exports of Goods and Services and Energy Consumption in Italy`s Service Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 254-261, May.
    10. Shihao Xie & Yun Zeng & Jing Qian & Fanjie Yang & Youtao Li, 2023. "CPSOGSA Optimization Algorithm Driven Cascaded 3DOF-FOPID-FOPI Controller for Load Frequency Control of DFIG-Containing Interconnected Power System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    11. Ying Li & Mi Zhou & Huaping Sun & Jia Liu, 2023. "Assessment of environmental tax and green bonds impacts on energy efficiency in the European Union," Economic Change and Restructuring, Springer, vol. 56(2), pages 1063-1081, April.
    12. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "A Centralized Power Flow Control Scheme of EV-Connected DC Microgrid to Satisfy Multi-Objective Problems under Several Constraints," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    13. Yuxuan Wang & Bingxu Zhang & Chenyang Li & Yongzhang Huang, 2022. "Collaborative Robust Optimization Strategy of Electric Vehicles and Other Distributed Energy Considering Load Flexibility," Energies, MDPI, vol. 15(8), pages 1-22, April.
    14. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    15. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    16. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    17. Enas Taha Sayed & Hegazy Rezk & Abdul Ghani Olabi & Mohamed R. Gomaa & Yahia B. Hassan & Shek Mohammad Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 15(22), pages 1-13, November.
    18. Popkova, Elena G. & Sergi, Bruno S., 2021. "Energy efficiency in leading emerging and developed countries," Energy, Elsevier, vol. 221(C).
    19. Gaoweijia Wang & Shanshan Li & Li Yang, 2022. "Research on the Pathway of Green Financial System to Implement the Realization of China’s Carbon Neutrality Target," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    20. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2835-:d:1057478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.