IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14504-d1254053.html
   My bibliography  Save this article

Monitoring of Oil Spill Risk in Coastal Areas Based on Polarimetric SAR Satellite Images and Deep Learning Theory

Author

Listed:
  • Lu Liao

    (School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
    Technology Service Center of Surveying and Mapping, Sichuan Bureau of Surveying, Mapping and Geoinformation, Chengdu 610081, China)

  • Qing Zhao

    (School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Wenyue Song

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China)

Abstract

Healthy coasts have a high ecological service value. However, many coastal areas are faced with oil spill risks. The Synthetic Aperture Radar (SAR) remote sensing technique has become an effective tool for monitoring the oil spill risk in coastal areas. In this study, taking Jiaozhou Bay in China as the study area, an innovative oil spill monitoring framework was established based on Polarimetric SAR (PolSAR) images and deep learning theory. Specifically, a DeepLabv3+-based semantic segmentation model was trained using 35 Sentinel-1 satellite images of oil films on the sea surface from maritime sectors in different regions all over the world, which not only considered the information from the PolSAR images but also meteorological conditions; then, the well-trained framework was deployed to identify the oil films in the Sentinel-1 images of Jiaozhou Bay from 2017 to 2019. The experimental results show that the detection accuracies of the proposed oil spill detection model were higher than 0.95. It was found that the oil films in Jiaozhou Bay were mainly concentrated in the vicinity of the waterways and coastal port terminals, that the occurrence frequency of oil spills in Jiaozhou Bay decreased from 2017 to 2019, and that more than 80 percent of the oil spill events occurred at night, mainly coming from the illegal discharge of waste oil from ships. These data indicate that, in the future, the PolSAR technique will play a more important role in oil spill monitoring for Jiaozhou Bay due to its capability to capture images at night.

Suggested Citation

  • Lu Liao & Qing Zhao & Wenyue Song, 2023. "Monitoring of Oil Spill Risk in Coastal Areas Based on Polarimetric SAR Satellite Images and Deep Learning Theory," Sustainability, MDPI, vol. 15(19), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14504-:d:1254053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Haizhong & Zhong, Weiqiong & Chen, Yurong & Li, Huajiao & Gao, Xiangyun, 2014. "Features and evolution of international crude oil trade relationships: A trading-based network analysis," Energy, Elsevier, vol. 74(C), pages 254-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    2. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    3. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    4. Du, Ruijin & Wang, Ya & Dong, Gaogao & Tian, Lixin & Liu, Yixiao & Wang, Minggang & Fang, Guochang, 2017. "A complex network perspective on interrelations and evolution features of international oil trade, 2002–2013," Applied Energy, Elsevier, vol. 196(C), pages 142-151.
    5. Dong, Di & An, Haizhong & Huang, Shupei, 2017. "The transfer of embodied carbon in copper international trade: An industry chain perspective," Resources Policy, Elsevier, vol. 52(C), pages 173-180.
    6. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    7. Cappelli, Federica & Carnazza, Giovanni & Vellucci, Pierluigi, 2023. "Crude oil, international trade and political stability: Do network relations matter?," Energy Policy, Elsevier, vol. 176(C).
    8. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    9. N. Wei & W. -J. Xie & W. -X. Zhou, 2021. "Robustness of the international oil trade network under targeted attacks to economies," Papers 2101.10679, arXiv.org, revised Jan 2021.
    10. Wei Hu & Yuejing Ge & Zhiding Hu & Na Li & Li Ye & Ziran Jiang & Yun Deng & Shufang Wang & Yue Shan, 2022. "Features of Geo-Economic Network between China and Countries along the 21st Century Maritime Silk Road," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    11. Li, Xiaotong & Zhang, Hua & Zhou, Xuanru & Zhong, Weiqiong, 2022. "Research on the evolution of the global import and export competition network of chromium resources from the perspective of the whole industrial chain," Resources Policy, Elsevier, vol. 79(C).
    12. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).
    13. Ren, Bo & Li, Huajiao & Shi, Jianglan & Liu, Yanxin & Qi, Yajie, 2022. "Identifying the key sectors and paths of the embodied energy in BRICS nations: A weighted multilayer network approach," Energy, Elsevier, vol. 239(PB).
    14. Yu, Yu & Ma, Daipeng & Zhu, Weiwei, 2023. "Resilience assessment of international cobalt trade network," Resources Policy, Elsevier, vol. 83(C).
    15. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    16. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    17. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
    18. Sun, Xiaoqi & An, Haizhong & Gao, Xiangyun & Jia, Xiaoliang & Liu, Xiaojia, 2016. "Indirect energy flow between industrial sectors in China: A complex network approach," Energy, Elsevier, vol. 94(C), pages 195-205.
    19. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    20. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14504-:d:1254053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.