IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13332-d1233663.html
   My bibliography  Save this article

Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA

Author

Listed:
  • Qilong Wang

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Qi Yin

    (College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Muyi Huang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Wei Sun

    (School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China)

Abstract

Over the past decades, resource-based cities have played a significant role in the development of countries worldwide. China, as a representative developing country, has seen the vital role played by resource-based cities in its development progress. However, heavy reliance on resources in these cities leads to environmental issues. The challenge lies in achieving ecological innovation and enhancing residents’ well-being within resource and environmental constraints for sustainable regional development. This study introduces a two-stage super slacks-based measure (super-SBM) approach to assess the ecological efficiency (EE), ecological innovation (EI), and residents’ well-being (RW) efficiency of 92 sample resource-based cities in China, and presents spatial and grouping comparisons. Then, the fuzzy-set qualitative comparative analysis method (fsQCA) is applied to identify paths and development orientations for sustainable development. The results show that resource-based cities in southwest and northwest China exhibit strong performance in EE, EI, and RW, while those in the northeast perform poorly. Growth and maturity resource-based cities demonstrate favorable development in EE and EI, whereas recession and regeneration resource-based cities show unsatisfactory development. The RW efficiency tends to stabilize after the rapid growth of the 92 sample resource-based cities. The fsQCA reveals five paths to achieving high EE, three paths for high EI efficiency, and two paths for high RW efficiency. These paths can be categorized into four development orientations: scale-oriented, economic-oriented, integrated-oriented, and transformation-oriented. These results provide essential references for the development planning and strategic formulation not only in China but also in other similar resource-based cities globally.

Suggested Citation

  • Qilong Wang & Qi Yin & Muyi Huang & Wei Sun, 2023. "Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA," Sustainability, MDPI, vol. 15(18), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13332-:d:1233663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    2. Linyan Wang & Haiqing Hu & Xianzhu Wang & Xincheng Zhang & Hao Sun, 2022. "Spatiotemporal Evolution and Cause Analysis of Urban Housing Investment Resilience: An Empirical Study of 35 Large and Medium-Sized Cities in China," Land, MDPI, vol. 11(10), pages 1-20, October.
    3. Cheng, Zhiming & King, Stephen P. & Smyth, Russell & Wang, Haining, 2016. "Housing property rights and subjective wellbeing in urban China," European Journal of Political Economy, Elsevier, vol. 45(S), pages 160-174.
    4. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    5. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    6. Li, Huijuan & Long, Ruyin & Chen, Hong, 2013. "Economic transition policies in Chinese resource-based cities: An overview of government efforts," Energy Policy, Elsevier, vol. 55(C), pages 251-260.
    7. Bowen Sun & Haibo Wang & Jaime Ortiz & Jun Huang & Can Zhao & Zelang Wang, 2022. "A Decomposed Data Analysis Approach to Assessing City Sustainable Development Performance: A Network DEA Model with a Slack-Based Measure," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    8. Luo, Lianfa & Liu, Peiyao & Zhu, Fangjing & Sun, Yongping & Liu, Lingna, 2022. "Policy objective bias and institutional quality improvement: Sustainable development of resource-based cities," Resources Policy, Elsevier, vol. 78(C).
    9. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    10. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    11. Li Li & Yalin Lei & Dongyang Pan & Chunyan Si, 2016. "Research on Sustainable Development of Resource-Based Cities Based on the DEA Approach: A Case Study of Jiaozuo, China," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, January.
    12. Shao, Shuai & Zhang, Yan & Tian, Zhihua & Li, Ding & Yang, Lili, 2020. "The regional Dutch disease effect within China: A spatial econometric investigation," Energy Economics, Elsevier, vol. 88(C).
    13. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    14. Custodio, Henry M. & Hadjikakou, Michalis & Bryan, Brett A., 2023. "A review of socioeconomic indicators of sustainability and wellbeing building on the social foundations framework," Ecological Economics, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    2. Wang, Kai & Chen, Xi & Wang, Chenye, 2023. "The impact of sustainable development planning in resource-based cities on corporate ESG–Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    3. Wanfang Shen & Yufei Liu & Xiaowen Liu & Jianing Shi & Wenbin Liu & Chengye Liu, 2023. "The Effect of Industrial Structure Upgrading and Human Capital Structure Upgrading on Green Development Efficiency—Based on China’s Resource-Based Cities," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    4. Zhu, Junpeng & Lin, Boqiang, 2022. "Resource dependence, market-oriented reform, and industrial transformation: Empirical evidence from Chinese cities," Resources Policy, Elsevier, vol. 78(C).
    5. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    6. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    7. Weizhen Ren & Zilong Zhang & Yueju Wang & Bing Xue & Xingpeng Chen, 2020. "Measuring Regional Eco-Efficiency in China (2003–2016): A “Full World” Perspective and Network Data Envelopment Analysis," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    8. Yao Hu & Tai-Hua Yan & Feng-Wen Chen, 2020. "Energy and Environment Performance of Resource-Based Cities in China: A Non-Parametric Approach for Estimating Hyperbolic Distance Function," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    9. Yuxin Meng & Lu Liu & Jianlong Wang & Qiying Ran & Xiaodong Yang & Jianliang Shen, 2021. "Assessing the Impact of the National Sustainable Development Planning of Resource-Based Cities Policy on Pollution Emission Intensity: Evidence from 270 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    10. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    11. Bowen Sun & Haibo Wang & Jaime Ortiz & Jun Huang & Can Zhao & Zelang Wang, 2022. "A Decomposed Data Analysis Approach to Assessing City Sustainable Development Performance: A Network DEA Model with a Slack-Based Measure," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    12. Zhen Liu & Trong Lam Vu & Thi Thu Hien Phan & Thanh Quang Ngo & Nguyen Ho Viet Anh & Ahmad Romadhoni Surya Putra, 2022. "Financial inclusion and green economic performance for energy efficiency finance," Economic Change and Restructuring, Springer, vol. 55(4), pages 2359-2389, November.
    13. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    14. Yiting Su & Jing Li & Shouqiang Yin & Jiabao Yue & Zhai Jiang & Tianyue Ma & Zhangqian Han, 2023. "Spatial and Temporal Variation Characteristics and Driving Mechanisms of Multidimensional Socio-Economic Development Levels in Resource-Based Cities," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    15. Zhao, Yanqi & Yang, Ying & Leszek, Sobkowiak & Wang, Xinyi, 2021. "Experience in the transformation process of “coal city” to “beautiful city”: Taking Jiaozuo City as an example," Energy Policy, Elsevier, vol. 150(C).
    16. Shiqiang Sun & Yujia Liu, 2023. "Data-Driven Eco-Efficiency Analysis and Improvement in the Logistics Industry in Anhui," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    17. Fan, Xiaojia & Wu, Sanmang & Lei, Yalin & Li, Shantong & Li, Li, 2020. "Have China's resource-based regions improved in the division of GVCs? — Taking Shanxi Province as an example," Resources Policy, Elsevier, vol. 68(C).
    18. Ai, Hongshan & Tan, Xiaoqing & Zhou, Shengwen & Liu, Wen, 2023. "The impact of supportive policy for resource-exhausted cities on carbon emission: Evidence from China," Resources Policy, Elsevier, vol. 85(PB).
    19. Liu, Biao & Wang, Jinman & Jing, Zhaorui & Tang, Qian, 2020. "Measurement of sustainable transformation capability of resource-based cities based on fuzzy membership function: A case study of Shanxi Province, China," Resources Policy, Elsevier, vol. 68(C).
    20. Ruan, Fangli & Yan, Liang & Wang, Dan, 2021. "Policy effects on the sustainable development of resource-based cities in China: A case study of Yichun City," Resources Policy, Elsevier, vol. 72(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13332-:d:1233663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.