IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12331-d1216493.html
   My bibliography  Save this article

Long-Term Dynamics of Ecosystem Services and Their Influencing Factors in Ecologically Fragile Southwest China

Author

Listed:
  • Mengyao Ci

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Lu Ye

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Changhao Liao

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Li Yao

    (Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Zhiqin Tu

    (School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China)

  • Qiao Xing

    (The River Affairs Center of Chongqing, Chongqing 401147, China)

  • Xuguang Tang

    (Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Zhi Ding

    (Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China)

Abstract

Southwest China has one of the largest karst landscapes on the Earth and an ecologically fragile environment. A better understanding of how ecosystem services function in karst areas helps ecological preservation and policy implementation. However, little effort has been made to evaluate the long-term dynamics of ecosystem services across Southwest China. This study systematically analyzed the spatio-temporal patterns and the values of three typical ecosystem service functions, including water conservation, carbon sequestration, and soil conservation, as well as the effects of precipitation and land use changes between 2000 and 2020. The results showed that water conservation exhibited an overall decrease from southeast to northwest, while soil conservation showed the opposite trend. The regions with an increasing trend in carbon sequestration were mainly distributed in Guizhou, Guangxi, and Sichuan. Compared to the year 2000, the percentage of water conservation and soil conservation decreased by 4.50% and 0.76%, respectively. However, carbon sequestration increased by 94.35%. The total value of ecosystem services in Southwest China showed a 90.00% increase in 2020 relative to 2000. Water conservation and carbon sequestration had a much closer correlation with precipitation. The impact of soil conservation was more significantly influenced by land use changes.

Suggested Citation

  • Mengyao Ci & Lu Ye & Changhao Liao & Li Yao & Zhiqin Tu & Qiao Xing & Xuguang Tang & Zhi Ding, 2023. "Long-Term Dynamics of Ecosystem Services and Their Influencing Factors in Ecologically Fragile Southwest China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12331-:d:1216493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.
    2. Giacomo Medici & Valeria Lorenzi & Chiara Sbarbati & Mauro Manetta & Marco Petitta, 2023. "Structural Classification, Discharge Statistics, and Recession Analysis from the Springs of the Gran Sasso (Italy) Carbonate Aquifer; Comparison with Selected Analogues Worldwide," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    3. Peng, Jian & Tian, Lu & Zhang, Zimo & Zhao, Yan & Green, Sophie M. & Quine, Timothy A. & Liu, Hongyan & Meersmans, Jeroen, 2020. "Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China," Ecosystem Services, Elsevier, vol. 46(C).
    4. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    5. Yongxia Ding & Shouzhang Peng, 2020. "Spatiotemporal Trends and Attribution of Drought across China from 1901–2100," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    6. Watanabe, Marcos D.B. & Ortega, Enrique, 2014. "Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change," Ecological Modelling, Elsevier, vol. 271(C), pages 113-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    2. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    3. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    4. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    5. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    6. Huanchao Guo & Shi He & Haitao Jing & Geding Yan & Hui Li, 2023. "Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    7. Binyu Ren & Qianfeng Wang & Rongrong Zhang & Xiaozhen Zhou & Xiaoping Wu & Qing Zhang, 2022. "Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    8. Yuqing Xiong & Hong Li & Meichen Fu & Xiuhua Ma & Lei Wang, 2022. "Evaluation of Ecosystem Service Change Patterns in a Mining-Based City: A Case Study of Wu’an City," Land, MDPI, vol. 11(6), pages 1-18, June.
    9. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    10. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    11. Xi Kan & Xu Liu & Zhou Zhou & Yonghong Zhang & Linglong Zhu & Kenny Thiam Choy Lim Kam Sian & Qi Liu, 2023. "Analysis of Spatiotemporal Variation and Influencing Factors of PM 2.5 in China Based on Multisource Data," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    12. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    13. Xue, Jingyan & Liu, Gengyuan & Casazza, Marco & Ulgiati, Sergio, 2018. "Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning," Energy, Elsevier, vol. 164(C), pages 475-495.
    14. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    15. Pan Jiang & Mengyue Li & Yuting Zhao & Xiujuan Gong & Ruifeng Jin & Yuhan Zhang & Xue Li & Liang Liu, 2022. "Does Environmental Regulation Improve Carbon Emission Efficiency? Inspection of Panel Data from Inter-Provincial Provinces in China," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    16. Debora Silva Queiroz & Maria da Glória Motta Garcia & Paulo Pereira, 2022. "Criteria for Selecting Areas to Identify Ecosystem Services Provided by Geodiversity: A Study on the Coast of São Paulo, Brazil," Resources, MDPI, vol. 11(10), pages 1-14, October.
    17. Feng, Yingjie & Zhu, Aikong & Wang, Jingya & Xia, Ke & Liu, Zhenglan, 2023. "Study on the low-carbon development under a resources-dependent framework of water-land -energy utilization: Evidence from the Yellow River Basin, China," Energy, Elsevier, vol. 280(C).
    18. Yuqing Xu & Fengjin Xiao, 2022. "Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    19. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Ning Zhang & Yongkuan Chi, 2023. "20-Year Ecological Impact Analysis of Shibing Karst World Natural Heritage through Land Use," Land, MDPI, vol. 12(11), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12331-:d:1216493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.