IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3154-d1064782.html
   My bibliography  Save this article

Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China

Author

Listed:
  • Chen Qu

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China)

  • Wen Li

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China)

  • Jia Xu

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China)

  • Song Shi

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China)

Abstract

Clarifying the relationship between carbon storage and ecological risks is critical to ensuring regional sustainable development. Land use changes caused by land use policy invariably result in substantial changes in carbon storage and ecological risks. The link between carbon storage and ecological risks in green space is still unknown, even though green space is an essential ecological function carrier. According to the Blackland Conservation Utilization (BCU) policy document and natural exploitation (NP) status, this study compared and projected the carbon storage and landscape ecological risk characteristics of green space in Heilongjiang Province (HLJP) for 2030. It also quantitatively assessed the interactions and synergistic changes of the two variables in terms of coupled coordination relationships, quantitative correlations, and spatial correlations. The results demonstrated the following: (1) the green space evolution of HJLP under the BCU scenario is significantly more drastic than under the NP scenario; (2) In 2020–2030, the NP scenario’s evolution of green space results in the ecosystem losing 323.51 × 10 6 t of carbon storage, compared to the BCU scenario’s loss of just 216.07 × 10 6 t. The BCU policy will increase the agglomeration of high-risk ranges in the northeast and southwest will but decrease the overall landscape ecological risk level of green space; (3) BCU policy will prevent the system’s orderly development and benign coupling, but it will increase the interdependence between carbon storage and landscape ecological risks in green space; (4) Green space exchange and loss will result in the simultaneous rise or decrease in both variables. The magnitude of carbon storage increase owing to green space expansion tends to increase simultaneously with the magnitude of landscape ecological risk reduction. To a certain extent, the HLJP black land conservation and utilization policy can improve carbon storage and ensure ecological security, and the matching of dominant regions with the status of the landscape evolutionary process can support future carbon-neutral actions.

Suggested Citation

  • Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3154-:d:1064782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanyan Jia & Xiaolan Tang & Wei Liu, 2020. "Spatial–Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Yongzheng Wang & Yiwen Ji & Haoran Yu & Xiaoying Lai, 2022. "Measuring the Relationship between Physical Geographic Features and the Constraints on Ecosystem Services from Urbanization Development," Sustainability, MDPI, vol. 14(13), pages 1-22, July.
    3. Wenbo Cai & Wanting Peng, 2021. "Exploring Spatiotemporal Variation of Carbon Storage Driven by Land Use Policy in the Yangtze River Delta Region," Land, MDPI, vol. 10(11), pages 1-12, October.
    4. Kabila Abass & Kwadwo Afriyie & Razak M. Gyasi, 2019. "From green to grey: the dynamics of land use/land cover change in urban Ghana," Landscape Research, Taylor & Francis Journals, vol. 44(8), pages 909-921, November.
    5. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    6. Han Cai & Kun Ma & Yunjian Luo, 2019. "Geographical Modeling of Spatial Interaction between Built-Up Land Sprawl and Cultivated Landscape Eco-Security under Urbanization Gradient," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    7. Xiaodong Jing & Guiliang Tian & Minrui Li & Sohail Ahmad Javeed, 2021. "Research on the Spatial and Temporal Differences of China’s Provincial Carbon Emissions and Ecological Compensation Based on Land Carbon Budget Accounting," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    8. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    9. Haiyan Fang, 2021. "Changes in Cultivated Land Area and Associated Soil and SOC Losses in Northeastern China: The Role of Land Use Policies," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    10. Fuwei Qiao & Yongping Bai & Lixia Xie & Xuedi Yang & Shuaishuai Sun, 2021. "Spatio-Temporal Characteristics of Landscape Ecological Risks in the Ecological Functional Zone of the Upper Yellow River, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    11. Long, Kaisheng & Pijanowski, Bryan C., 2017. "Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales," Land Use Policy, Elsevier, vol. 69(C), pages 502-511.
    12. Kangwen Zhu & Jun He & Lanxin Zhang & Dan Song & Longjiang Wu & Yaqun Liu & Sheng Zhang, 2022. "Impact of Future Development Scenario Selection on Landscape Ecological Risk in the Chengdu-Chongqing Economic Zone," Land, MDPI, vol. 11(7), pages 1-18, June.
    13. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    14. Jinzhong Xu & Hao Li & XiaoBing Liu & Wei Hu & Qingnan Yang & Yanfang Hao & Huaicai Zhen & Xingyi Zhang, 2019. "Gully Erosion Induced by Snowmelt in Northeast China: A Case Study," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    15. Laporta, Lia & Domingos, Tiago & Marta-Pedroso, Cristina, 2021. "It's a keeper: Valuing the carbon storage service of Agroforestry ecosystems in the context of CAP Eco-Schemes," Land Use Policy, Elsevier, vol. 109(C).
    16. Shan Xu, 2018. "Temporal and Spatial Characteristics of the Change of Cultivated Land Resources in the Black Soil Region of Heilongjiang Province (China)," Sustainability, MDPI, vol. 11(1), pages 1-12, December.
    17. Yu Song & Xiaodong Song & Guofan Shao, 2020. "Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    18. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    19. Watanabe, Marcos D.B. & Ortega, Enrique, 2014. "Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change," Ecological Modelling, Elsevier, vol. 271(C), pages 113-131.
    20. Zhiyuan Zhu & Zhikun Mei & Xiyang Xu & Yongzhong Feng & Guangxin Ren, 2022. "Landscape Ecological Risk Assessment Based on Land Use Change in the Yellow River Basin of Shaanxi, China," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    21. Xie, Xue & Fang, Bin & Xu, Hanzeyu & He, Shasha & Li, Xin, 2021. "Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China," Land Use Policy, Elsevier, vol. 102(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xilong Dai & Yue Wang & Xinhang Li & Kang Wang & Jia Zhou & Hongwei Ni, 2023. "Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China," Land, MDPI, vol. 12(7), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    2. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    3. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    4. Siyu Sheng & Bohan Yang & Bing Kuang, 2022. "Impact of Cereal Production Displacement from Urban Expansion on Ecosystem Service Values in China: Based on Three Cropland Supplement Strategies," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    5. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    6. Yingting He & Chuyu Xia & Zhuang Shao & Jing Zhao, 2022. "The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region," Land, MDPI, vol. 11(6), pages 1-25, June.
    7. Tapio Riepponen & Mikko Moilanen & Jaakko Simonen, 2023. "Themes of resilience in the economics literature: A topic modeling approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(2), pages 326-356, April.
    8. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    9. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    10. Drakou, E.G. & Crossman, N.D. & Willemen, L. & Burkhard, B. & Palomo, I. & Maes, J. & Peedell, S., 2015. "A visualization and data-sharing tool for ecosystem service maps: Lessons learnt, challenges and the way forward," Ecosystem Services, Elsevier, vol. 13(C), pages 134-140.
    11. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    13. Julie Ryschawy & Rodolphe Sabatier & Dominique Vollet, 2016. "Comment sont évalués les systèmes et filières d’élevage. Un focus sur les méthodes et outils. Chapitre 3," Post-Print hal-02799411, HAL.
    14. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    15. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    16. Chiara Cortinovis & Grazia Zulian & Davide Geneletti, 2018. "Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy)," Land, MDPI, vol. 7(4), pages 1-20, September.
    17. Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
    18. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    19. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    20. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3154-:d:1064782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.