IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10137-d1179812.html
   My bibliography  Save this article

Using Energy Conservation-Based Demand-Side Management to Optimize an Off-Grid Integrated Renewable Energy System Using Different Battery Technologies

Author

Listed:
  • Polamarasetty P Kumar

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam 532127, India)

  • Akhlaqur Rahman

    (School of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne Campus, Melbourne, VIC 3001, Australia)

  • Ramakrishna S. S. Nuvvula

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam 532127, India
    Department of Electrical and Electronics, NMAM Institute of Technology, Nitte, Karkala 574110, India)

  • Ilhami Colak

    (Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul 34100, Turkey)

  • S. M. Muyeen

    (Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

  • Sk. A. Shezan

    (School of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne Campus, Melbourne, VIC 3001, Australia
    School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

  • G. M. Shafiullah

    (School of Engineering and Energy, Murdoch University, Murdoch, WA 6150, Australia)

  • Md. Fatin Ishraque

    (Department of Electrical and Electronics Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh)

  • Md. Alamgir Hossain

    (Queensland Micro and Nano-Technology Centre, Griffith University, Nathan, QLD 4113, Australia)

  • Faisal Alsaif

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Rajvikram Madurai Elavarasan

    (Research & Development Division (Power & Energy), Nestlives Private Limited, Chennai 600091, India)

Abstract

Rural electrification is necessary for both the country’s development and the well-being of the villagers. The current study investigates the feasibility of providing electricity to off-grid villages in the Indian state of Odisha by utilizing renewable energy resources that are currently available in the study area. However, due to the intermittent nature of renewable energy sources, it is highly improbable to ensure a continuous electricity supply to the off-grid areas. To ensure a reliable electricity supply to the off-grid areas, three battery technologies have been incorporated to find the most suitable battery system for the study area. In addition, we evaluated various demand side management (DSM) techniques and assessed which would be the most suitable for our study area. To assess the efficiency of the off-grid system, we applied different metaheuristic algorithms, and the results showed great promise. Based on our findings, it is clear that energy-conservation-based DSM is the ideal option for the study area. From all the algorithms tested, the salp swarm algorithm demonstrated the best performance for the current study.

Suggested Citation

  • Polamarasetty P Kumar & Akhlaqur Rahman & Ramakrishna S. S. Nuvvula & Ilhami Colak & S. M. Muyeen & Sk. A. Shezan & G. M. Shafiullah & Md. Fatin Ishraque & Md. Alamgir Hossain & Faisal Alsaif & Rajvik, 2023. "Using Energy Conservation-Based Demand-Side Management to Optimize an Off-Grid Integrated Renewable Energy System Using Different Battery Technologies," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10137-:d:1179812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
    3. Lucchi, Elena, 2022. "Integration between photovoltaic systems and cultural heritage: A socio-technical comparison of international policies, design criteria, applications, and innovation developments," Energy Policy, Elsevier, vol. 171(C).
    4. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    5. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    6. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    7. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    2. Polamarasetty P Kumar & Ramakrishna S. S. Nuvvula & Md. Alamgir Hossain & SK. A. Shezan & Vishnu Suresh & Michal Jasinski & Radomir Gono & Zbigniew Leonowicz, 2022. "Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context," Energies, MDPI, vol. 15(14), pages 1-50, July.
    3. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    4. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    5. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    6. Khan, Faizan A. & Pal, Nitai & Saeed, Syed H., 2021. "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, Elsevier, vol. 233(C).
    7. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    8. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    9. Polamarasetty P Kumar & Vishnu Suresh & Michal Jasinski & Zbigniew Leonowicz, 2021. "Off-Grid Rural Electrification in India Using Renewable Energy Resources and Different Battery Technologies with a Dynamic Differential Annealed Optimization," Energies, MDPI, vol. 14(18), pages 1-21, September.
    10. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    11. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    12. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.
    13. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    14. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    15. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    16. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    17. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    18. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    19. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    20. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10137-:d:1179812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.