IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1244-d1351702.html
   My bibliography  Save this article

Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios

Author

Listed:
  • Dimitrios Loukatos

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece)

  • Vasileios Arapostathis

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece)

  • Christos-Spyridon Karavas

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece)

  • Konstantinos G. Arvanitis

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece)

  • George Papadakis

    (Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece)

Abstract

The continuous growth of the urban electric vehicles market and the rapid progress of the electronics industry create positive prospects towards fostering the development of autonomous robotic solutions for covering critical production sectors. Agriculture can be seen as such, as its digital transformation is a promising necessity for protecting the environment, and for tackling the degradation of natural resources and increasing nutritional needs of the population on Earth. Many studies focus on the potential of agricultural robotic vehicles to perform operations of increased intelligence. In parallel, the study of the activity footprint of these vehicles can be the basis for supervising, detecting the malfunctions, scaling up, modeling, or optimizing the related operations. In this regard, this work, employing a prototype lightweight autonomous electric cargo vehicle, outlines a simple and cost-effective mechanism for a detailed robot’s power consumption logging. This process is conducted at a fine time granularity, allowing for detailed tracking. The study also discusses the robot’s energy performance across various typical agricultural field operation scenarios. In addition, a comparative analysis has been conducted to evaluate the performance of two different types of batteries for powering the robot for all the operation scenarios. Even non-expert users can conduct the field operation experiments, while directions are provided for the potential use of the data being collected. Given the linear relationship between the size and the consumption of electric robotic vehicles, the energy performance of the prototype agricultural cargo robot can serve as a basis for various studies in the area.

Suggested Citation

  • Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1244-:d:1351702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    3. William Ridley & Stephen Devadoss, 2021. "The Effects of COVID‐19 on Fruit and Vegetable Production," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(1), pages 329-340, March.
    4. Anthony King, 2017. "Technology: The Future of Agriculture," Nature, Nature, vol. 544(7651), pages 21-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison Kennedy & Jessie Adams & Jeremy Dwyer & Muhammad Aziz Rahman & Susan Brumby, 2020. "Suicide in Rural Australia: Are Farming-Related Suicides Different?," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    2. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    3. Thorsøe, Martin Hvarregaard & Noe, Egon Bjørnshave & Lamandé, Mathieu & Frelih-Larsen, Ana & Kjeldsen, Chris & Zandersen, Marianne & Schjønning, Per, 2019. "Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention," Land Use Policy, Elsevier, vol. 86(C), pages 427-437.
    4. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    5. Polamarasetty P Kumar & Akhlaqur Rahman & Ramakrishna S. S. Nuvvula & Ilhami Colak & S. M. Muyeen & Sk. A. Shezan & G. M. Shafiullah & Md. Fatin Ishraque & Md. Alamgir Hossain & Faisal Alsaif & Rajvik, 2023. "Using Energy Conservation-Based Demand-Side Management to Optimize an Off-Grid Integrated Renewable Energy System Using Different Battery Technologies," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    6. Eirini Aivazidou & Naoum Tsolakis, 2023. "Transitioning towards human–robot synergy in agriculture: A systems thinking perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 536-551, May.
    7. Milyausha Lukyanova & Vitaliy Kovshov & Zariya Zalilova & Vasily Lukyanov & Irek Araslanbaev, 2021. "A systemic comparative economic approach efficiency of fodder production," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    8. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    9. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    10. Maximilian Koppenberg & Martina Bozzola & Tobias Dalhaus & Stefan Hirsch, 2021. "Mapping potential implications of temporary COVID‐19 export bans for the food supply in importing countries using precrisis trade flows," Agribusiness, John Wiley & Sons, Ltd., vol. 37(1), pages 25-43, January.
    11. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    12. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    13. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    14. Dashuai Wang & Sheng Xu & Zhuolin Li & Wujing Cao, 2022. "Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method," Agriculture, MDPI, vol. 12(2), pages 1-14, January.
    15. M. Zulfiqar & Nahar F. Alshammari & M. B. Rasheed, 2023. "Reinforcement Learning-Enabled Electric Vehicle Load Forecasting for Grid Energy Management," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    16. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    17. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    18. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    19. Kitonsa, H. & Kruglikov, S. V., 2018. "Significance of drone technology for achievement of the United Nations sustainable development goals," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 4(3), pages 115-120.
    20. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1244-:d:1351702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.