IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9745-d1174116.html
   My bibliography  Save this article

GHG Emission Accounting and Reduction Strategies in the Academic Sector: A Case Study in Mexico

Author

Listed:
  • Leslie Cardoza Cedillo

    (Engineering School, Universidad de Monterrey, San Pedro Garza García C.P. 66238, Mexico
    Sustainability Center, Universidad de Monterrey, San Pedro Garza García C.P. 66238, Mexico)

  • Michelle Montoya

    (Engineering School, Universidad de Monterrey, San Pedro Garza García C.P. 66238, Mexico)

  • Mónica Jaldón

    (Engineering School, Universidad de Monterrey, San Pedro Garza García C.P. 66238, Mexico)

  • Ma Guadalupe Paredes

    (Engineering School, Universidad de Monterrey, San Pedro Garza García C.P. 66238, Mexico)

Abstract

The carbon footprint (CF) quantifies the greenhouse gas (GHG) emissions generated by human activities, expressed in carbon dioxide equivalent (CO 2 e) units. It is an instrument for monitoring and mitigating the effects of climate change, which particularly affects low- and middle-income countries such as Mexico. The Mexican government has established a goal of reducing GHG emissions by 22% from the levels in 2000 by 2030. Although most efforts to reduce GHG emissions have been focused on the energy and agriculture sectors, the academic sector is also important since it can advise changes in public policy. In this study, the 2019 CF of the Centro Roberto Garza Sada (CRGS), a design school at the Universidad de Monterrey, was estimated in an effort to develop measures for reducing GHG emissions. The GHG Protocol was employed to calculate the total CF of the CRGS and identify the greatest contributors, including commuting (50.2%), energy purchase (28.5%), business travel (19.6%), and energy generation, use of paper, refrigerants, and shipments (1.7%). Three progressive mitigation scenarios were developed to reduce the GHG emissions from commuting, energy consumption, collaborators and student mobility, and material resources. These strategies could reduce the GHG emissions of the CRGS by 63.5% of the baseline assessed.

Suggested Citation

  • Leslie Cardoza Cedillo & Michelle Montoya & Mónica Jaldón & Ma Guadalupe Paredes, 2023. "GHG Emission Accounting and Reduction Strategies in the Academic Sector: A Case Study in Mexico," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9745-:d:1174116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bonilla, David & Arias Soberon, Héctor & Galarza, Oscar Ugarteche, 2022. "Electric vehicle deployment & fossil fuel tax revenue in Mexico to 2050," Energy Policy, Elsevier, vol. 171(C).
    2. Nair, Mahendhiran & Arvin, Mak B. & Pradhan, Rudra P. & Bahmani, Sahar, 2021. "Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries," Renewable Energy, Elsevier, vol. 167(C), pages 132-145.
    3. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    4. Matthew Moerschbaecher & John W. Day, 2010. "The Greenhouse Gas Inventory of Louisiana State University: A Case Study of the Energy Requirements of Public Higher Education in the United States," Sustainability, MDPI, vol. 2(7), pages 1-18, July.
    5. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    6. Rotaris, Lucia & Danielis, Romeo, 2014. "The impact of transportation demand management policies on commuting to college facilities: A case study at the University of Trieste, Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 127-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangnian Xiao & Qin Cheng & Chunqin Zhang, 2019. "Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Wang, Yacan & Geng, Kexin & May, Anthony D. & Zhou, Huiyu, 2022. "The impact of traffic demand management policy mix on commuter travel choices," Transport Policy, Elsevier, vol. 117(C), pages 74-87.
    3. Rotaris, Lucia & Danielis, Romeo & Maltese, Ila, 2019. "Carsharing use by college students: The case of Milan and Rome," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 239-251.
    4. Aleksandra Romanowska & Romanika Okraszewska & Kazimierz Jamroz, 2019. "A Study of Transport Behaviour of Academic Communities," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    5. Branka Trček & Beno Mesarec, 2022. "Pathways to Alternative Transport Mode Choices among University Students and Staff—Commuting to the University of Maribor since 2010," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Mingkai Liu & Changxin Liu & Xiaodong Pei & Shouting Zhang & Xun Ge & Hongyan Zhang & Yang Li, 2021. "Sustainable Risk Assessment of Resource Industry at Provincial Level in China," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    7. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    8. Destek, Mehmet Akif & Adedoyin, Festus & Bekun, Festus Victor & Aydin, Sercan, 2023. "Converting a resource curse into a resource blessing: The function of institutional quality with different dimensions," Resources Policy, Elsevier, vol. 80(C).
    9. Collins, Patricia A. & MacFarlane, Robert, 2018. "Evaluating the determinants of switching to public transit in an automobile-oriented mid-sized Canadian city: A longitudinal analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 682-695.
    10. Davidmac O. Ekeocha & Jonathan E. Ogbuabor & Oliver E. Ogbonna & Anthony Orji, 2023. "Economic policy uncertainty, governance institutions and economic performance in Africa: are there regional differences?," Economic Change and Restructuring, Springer, vol. 56(3), pages 1367-1431, June.
    11. Shin, Eun Jin, 2021. "Exploring the causal impact of transit fare exemptions on older adults’ travel behavior: Evidence from the Seoul metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 319-338.
    12. Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
    13. David Arthur Cleveland & Quentin Gee & Audrey Horn & Lauren Weichert & Mickael Blancho, 2021. "How many chickens does it take to make an egg? Animal welfare and environmental benefits of replacing eggs with plant foods at the University of California, and beyond," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(1), pages 157-174, February.
    14. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Honghu Sun & Feng Zhen & Yupei Jiang, 2020. "Study on the Characteristics of Urban Residents’ Commuting Behavior and Influencing Factors from the Perspective of Resilience Theory: Theoretical Construction and Empirical Analysis from Nanjing, Chi," IJERPH, MDPI, vol. 17(5), pages 1-17, February.
    16. Jiang, Qingquan & Rahman, Zia Ur & Zhang, Xiaosan & Guo, Zhiqin & Xie, Qiaosheng, 2022. "An assessment of the impact of natural resources, energy, institutional quality, and financial development on CO2 emissions: Evidence from the B&R nations," Resources Policy, Elsevier, vol. 76(C).
    17. Hannes Wallimann & Kevin Blattler & Widar von Arx, 2021. "Do price reductions attract customers in urban public transport? A synthetic control approach," Papers 2111.14613, arXiv.org, revised Mar 2022.
    18. Gang Li & Yanan Chen & Yan Cheng, 2024. "Can the Synergy of Digitalization and Servitization Boost Carbon-Related Manufacturing Productivity? Evidence from China’s Provincial Panel Data," Sustainability, MDPI, vol. 16(7), pages 1-23, March.
    19. Sultana, Nahid & Rahman, Mohammad Mafizur & Khanam, Rasheda & Islam, K.M. Zahidul, 2022. "The causative factors of environmental degradation in South Asia," Journal of Asian Economics, Elsevier, vol. 79(C).
    20. Hasnine, Md Sami & Lin, TianYang & Weiss, Adam & Habib, Khandker Nurul, 2018. "Determinants of travel mode choices of post-secondary students in a large metropolitan area: The case of the city of Toronto," Journal of Transport Geography, Elsevier, vol. 70(C), pages 161-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9745-:d:1174116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.