IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7040-d834399.html
   My bibliography  Save this article

Weighting of Firefighting Turnout Gear Risk Factors According to Expert Opinion

Author

Listed:
  • Tsui-Yuan Chang

    (Graduate Institute of Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec.4, Da’an Dist., Taipei City 106335, Taiwan
    Department of Textiles and Clothing, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan)

  • Hsi-Peng Lu

    (Department of Information Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec.4, Da’an Dist., Taipei City 106335, Taiwan)

  • Tain-Yi Luor

    (Graduate Institute of Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec.4, Da’an Dist., Taipei City 106335, Taiwan)

  • Ping-Wu Chang

    (Department of Criminal Justice, Ming Chuan University, 3F, No. 130, Jihe Rd., Shilin Dist., Taipei City 111013, Taiwan)

Abstract

Firefighters in Taiwan often wear expired protective clothing, which raises concerns regarding their safety. Extending the service life of fire protective clothing can improve firefighter safety and ensure environmental sustainability. In this study, an analytic hierarchy process was used to understand which risk factors should be prioritized in the design of firefighting turnout gear. We surveyed 30 experts in the field of firefighting and safety management on the importance of various risk factors related to turnout gear. A risk level of 70% was taken as the threshold of tolerable risk. The rankings of the weighted risk factors demonstrate that eliminating 12 of the 28 risk factors will result in 73% safety. These 12 factors are, in order of maximum risk, insufficient flame resistance, insufficient heat resistance, putting on the suit components in the wrong order, insufficient resistance to tears and punctures, poor agility, heavy overall weight, insufficient water resistance, lack of flame-retardant fibers, high levels of toxicity, insufficient internal circulation, no air filtration device, and poor air permeability. Consideration of these factors in the design of fire protective clothing can extend service life, help achieve sustainable development goals, and ensure firefighters’ safety.

Suggested Citation

  • Tsui-Yuan Chang & Hsi-Peng Lu & Tain-Yi Luor & Ping-Wu Chang, 2022. "Weighting of Firefighting Turnout Gear Risk Factors According to Expert Opinion," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7040-:d:834399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Qianling Jiang & Li-Chieh Chen & Jie Zhang, 2019. "Perception and Preference Analysis of Fashion Colors: Solid Color Shirts," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    3. Goworek, Helen & Oxborrow, L. & Claxton, S. & McLaren, A. & Cooper, T. & Hill, H., 2020. "Managing sustainability in the fashion business: Challenges in product development for clothing longevity in the UK," Journal of Business Research, Elsevier, vol. 117(C), pages 629-641.
    4. Deirdre Shaw & Robert McMaster & Terry Newholm, 2016. "Care and Commitment in Ethical Consumption: An Exploration of the ‘Attitude–Behaviour Gap’," Journal of Business Ethics, Springer, vol. 136(2), pages 251-265, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Jerome Chih-Lung Chou & Yu-Sheng Lin & Ying-Hsun Hung & Xuan-Han Chen, 2023. "Identification of SMEs in the Critical Factors of an IS Backup System Using a Three-Stage Advanced Hybrid MDM–AHP Model," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    2. Marianna Tomaskova & Jozef Krajňák, 2023. "Features and Sustainable Design of Firefighting Safety Footwear for Fire Extinguishing and Rescue Operations," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badreya Gharib Khamis Mohammed Alblooshi & Syed Zamberi Ahmad & Matloub Hussain & Sanjay Kumar Singh, 2022. "Sustainable management of electronic waste: Empirical evidences from a stakeholders' perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1856-1874, May.
    2. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Gwarlann Kerviler & Nico Heuvinck & Elodie Gentina, 2022. "“Make an Effort and Show Me the Love!” Effects of Indexical and Iconic Authenticity on Perceived Brand Ethicality," Journal of Business Ethics, Springer, vol. 179(1), pages 89-110, August.
    4. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    5. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    6. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    7. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    8. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    9. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    10. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    13. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    14. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    15. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    16. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    17. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    19. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    20. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7040-:d:834399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.