IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p604-d477901.html
   My bibliography  Save this article

Assessing the Environmental Impact and Cost of the Tourism-Induced CO 2 , NO x , SO x Emission in China

Author

Listed:
  • Yalan Shi

    (College of Tourism, Huaqiao University, Quanzhou 362021, China
    Institute or Straits Tourism Research, Huaqiao University, Quanzhou 362021, China)

  • Miaojing Yu

    (College of Tourism, Huaqiao University, Quanzhou 362021, China
    Institute or Straits Tourism Research, Huaqiao University, Quanzhou 362021, China)

Abstract

Tourism, as one economic activity, results in a full range of environmental impacts globally as well as in China. However, the evaluation of environmental impacts is insufficient because of the strong correlation effect between tourism and other industries. This study attempted to assess the environmental impact and cost of the tourism-induced pollutant emissions (in a broad sense) at the national scale through constructing the environmental-economic input-output model. Our results suggested that the China’s total emission of CO 2 , NO x , SO x related to tourism industry increased from 42 × 10 6 t, 162 kt, 345 kt in 1995 to 157 × 10 6 t, 527 kt, 854 kt in 2009. The indirect CO 2 , NO x , and SO x emissions of tourism and related industries were nearly 6.8–11 times of their direct emission in travel agency. Most of these indirect emissions (73% of CO 2 in 2009, 54% of NO x in 1995, 62% of SO x in 2009) are derived from the energy plants and industrial sectors. The sustainable tourism should largely depend on the realization of sustainable mobility and transportation, through the low-emission behavior and energy-saving technology. The emission reduction cost of tourism industry in China was 30,170 and 172,812 million CNY in 1995 and 2009, accounting for nearly 14% of the total tourism revenue.

Suggested Citation

  • Yalan Shi & Miaojing Yu, 2021. "Assessing the Environmental Impact and Cost of the Tourism-Induced CO 2 , NO x , SO x Emission in China," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:604-:d:477901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    2. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    3. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    4. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    5. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Clement Tisdell, 1993. "Foreign Tourism: Benefits to China and Contribution to Development," Palgrave Macmillan Books, in: Economic Development in the Context of China, chapter 11, pages 171-190, Palgrave Macmillan.
    7. Alessandra Fermani & Maria Rita Sergi & Angelo Carrieri & Isabella Crespi & Laura Picconi & Aristide Saggino, 2020. "Sustainable Tourism and Facilities Preferences: The Sustainable Tourist Stay Scale (STSS) Validation," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
    8. Dubois, Ghislain & Peeters, Paul & Ceron, Jean-Paul & Gössling, Stefan, 2011. "The future tourism mobility of the world population: Emission growth versus climate policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1031-1042.
    9. Katircioglu, Salih Turan & Feridun, Mete & Kilinc, Ceyhun, 2014. "Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 634-640.
    10. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    11. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    12. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).
    13. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    2. Osorio, Pilar & Cadarso, María-Ángeles & Tobarra, María-Ángeles & García-Alaminos, Ángela, 2023. "Carbon footprint of tourism in Spain: Covid-19 impact and a look forward to recovery," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 303-318.
    3. Sudeshna Ghosh, 2022. "Effects of tourism on carbon dioxide emissions, a panel causality analysis with new data sets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3884-3906, March.
    4. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    5. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    6. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    7. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    8. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    9. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    10. Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
    11. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    12. Bei Gao & Zuoren Sun, 2023. "Marginal CO 2 and SO 2 Abatement Costs and Determinants of Coal-Fired Power Plants in China: Considering a Two-Stage Production System with Different Emission Reduction Approaches," Energies, MDPI, vol. 16(8), pages 1-26, April.
    13. Xian, Yujiao & Yu, Dan & Wang, Ke & Yu, Jian & Huang, Zhimin, 2022. "Capturing the least costly measure of CO2 emission abatement: Evidence from the iron and steel industry in China," Energy Economics, Elsevier, vol. 106(C).
    14. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    15. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    16. Yue Pan & Gangmin Weng & Conghui Li & Jianpu Li, 2021. "Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    17. Hai-Ying Gu & Qing-Mi Hu & Tian-Qiong Wang, 2019. "Payment for Rice Growers to Reduce Using N Fertilizer in the GHG Mitigation Program Driven by the Government: Evidence from Shanghai," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    18. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    19. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    20. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:604-:d:477901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.