IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12128-d671157.html
   My bibliography  Save this article

Environmental Pollution Effects of Regional Industrial Transfer Illustrated with Jiangsu, China

Author

Listed:
  • Guangxiong Mao

    (School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, China
    Key Research Base of Philosophy and Social Sciences in Jiangsu Universities-Research Institute of Huaihe River Eco-Economic Belt, Huai’an 223300, China
    Guangxiong Mao and Wei Jin contributed equally to this work.)

  • Wei Jin

    (School of Sociology and Population Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    Guangxiong Mao and Wei Jin contributed equally to this work.)

  • Ying Zhu

    (Energy College, Chengdu University of Technology, Chengdu 610059, China)

  • Yanjun Mao

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China)

  • Wei-Ling Hsu

    (School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, China
    Key Research Base of Philosophy and Social Sciences in Jiangsu Universities-Research Institute of Huaihe River Eco-Economic Belt, Huai’an 223300, China)

  • Hsin-Lung Liu

    (Department of Leisure Management, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan, China)

Abstract

Industrial transfer is reshaping the geographic layout of industries and facilitating the transfer and spread of environmental pollution. This study employs the pollution transfer estimation method to discuss the environmental effect of industrial transfer. By compiling statistics on industries of a certain scale according to time-series data, the researchers compute the pollution load generated by industrial transfer and the difference in pollution emissions for each region and industry. Through the constructed evaluation model, the empirical scope is Jiangsu, which is the most developed industry in China. The results reveal that there is an apparent spatial hierarchy among the transferred industries in Jiangsu. Most industries transfer from the southern Jiangsu region toward the central Jiangsu and northern Jiangsu regions. Environmental pollution is redistributed among prefecture-level cities because of intercity industrial transfer; the spatial characteristics of pollution exhibit a notable hierarchical pattern. Furthermore, the transferred pollution load differs considerably between industries. The textile industry and chemical raw material and chemical product industry are mainly transferred toward the Central Jiangsu and Northern Jiangsu regions, whereas the papermaking and paper product manufacturing industry is primarily redistributed to the Southern Jiangsu region. The empirical results can serve as a reference for analyzing the environmental pollution effects of regional industrial transfer.

Suggested Citation

  • Guangxiong Mao & Wei Jin & Ying Zhu & Yanjun Mao & Wei-Ling Hsu & Hsin-Lung Liu, 2021. "Environmental Pollution Effects of Regional Industrial Transfer Illustrated with Jiangsu, China," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12128-:d:671157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingshan Yang & Jie Liu & Yu Zhang, 2017. "Decoupling Agricultural Nonpoint Source Pollution from Crop Production: A Case Study of Heilongjiang Land Reclamation Area, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    4. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    5. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    6. Liang, Feng Helen, 2017. "Does foreign direct investment improve the productivity of domestic firms? Technology spillovers, industry linkages, and firm capabilities," Research Policy, Elsevier, vol. 46(1), pages 138-159.
    7. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    8. Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2019. "Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector," Energy, Elsevier, vol. 173(C), pages 706-720.
    9. Doytch, Nadia & Uctum, Merih, 2016. "Globalization and the environmental impact of sectoral FDI," Economic Systems, Elsevier, vol. 40(4), pages 582-594.
    10. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    11. Haiying Xu & Wei-Ling Hsu & Teen-Hang Meen & Ju Hua Zhu, 2020. "Can Higher Education, Economic Growth and Innovation Ability Improve Each Other?," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    12. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachen Yue & Huasheng Zhu & Fei Yao, 2021. "Does Industrial Transfer Change the Spatial Structure of CO 2 Emissions?—Evidence from Beijing-Tianjin-Hebei Region in China," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    2. Ze Feng & Yingfei Huang & Zhaoyang Kong, 2023. "The Environmental, Economic and Social Welfare Impacts of the CCREW Project in China: A Study Based on the CGE Model," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    3. Xuelan Li & Jiyu Jiang & Javier Cifuentes-Faura, 2023. "Coordinated Development and Sustainability of the Agriculture, Climate and Society System in China: Based on the PLE Analysis Framework," Land, MDPI, vol. 12(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    2. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    3. Abdulrasheed Zakari & Bahareh Oryani & Rafael Alvarado & Kadir Mumini, 2023. "Assessing the impact of green energy and finance on environmental performance in China and Japan," Economic Change and Restructuring, Springer, vol. 56(2), pages 1185-1199, April.
    4. Yang, Zhendong & Abbas, Qaiser & Hanif, Imran & Alharthi, Majed & Taghizadeh-Hesary, Farhad & Aziz, Babar & Mohsin, Muhammad, 2021. "Short- and long-run influence of energy utilization and economic growth on carbon discharge in emerging SREB economies," Renewable Energy, Elsevier, vol. 165(P1), pages 43-51.
    5. Singhania, Monica & Saini, Neha, 2021. "Demystifying pollution haven hypothesis: Role of FDI," Journal of Business Research, Elsevier, vol. 123(C), pages 516-528.
    6. Yu Zhang & Xiaojiao Zou & Caifen Xu & Qingshan Yang, 2018. "Decoupling Greenhouse Gas Emissions from Crop Production: A Case Study in the Heilongjiang Land Reclamation Area, China," Energies, MDPI, vol. 11(6), pages 1-13, June.
    7. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    8. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    9. Shabir, Maria & Pazienza, Pasquale & De Lucia, Caterina, 2023. "Energy innovation and ecological footprint: Evidence from OECD countries during 1990–2018," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    10. Haider Mahmood, 2020. "CO2 Emissions, Financial Development, Trade, and Income in North America: A Spatial Panel Data Approach," SAGE Open, , vol. 10(4), pages 21582440209, October.
    11. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Production and Sustainable Development: The Role of Renewable Energy Sources and Specific Socioeconomic Factors," Energies, MDPI, vol. 16(2), pages 1-21, January.
    12. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    13. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-30, June.
    14. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    15. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    16. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    17. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    18. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    19. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    20. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12128-:d:671157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.