IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11629-d661389.html
   My bibliography  Save this article

Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability

Author

Listed:
  • José Carlos Romero

    (Institute for Research in Technology, Comillas Pontifical University, 28015 Madrid, Spain)

  • Pedro Linares

    (Doctoral School, Comillas Pontifical University, 28015 Madrid, Spain)

Abstract

There is a broad international consensus about the urgency of promoting a strong change towards energy models that are less dependent on non-renewable energy sources, more equitable, and truly environmentally friendly. In order to achieve this goal, we need to define the problem so that it can be operationally and comprehensively addressed. This paper presents a proposal of a framework for the analysis of the sustainability of energy models based on multiple criteria theory, which we consider comprehensive and operational enough. Its application to a real energy model, the Spanish one, shows that the framework is able to address most of the elements both of weak and strong sustainability and find a reasonable compromise within the limits of the problem.

Suggested Citation

  • José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11629-:d:661389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giampietro, Mario & Mayumi, Kozo & Munda, Giuseppe, 2006. "Integrated assessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability," Energy, Elsevier, vol. 31(1), pages 59-86.
    2. Ramin Gharizadeh Beiragh & Reza Alizadeh & Saeid Shafiei Kaleibari & Fausto Cavallaro & Sarfaraz Hashemkhani Zolfani & Romualdas Bausys & Abbas Mardani, 2020. "An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies," Sustainability, MDPI, vol. 12(3), pages 1, January.
    3. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    4. Ana Garcia-Bernabeu & Adolfo Hilario-Caballero & David Pla-Santamaria & Francisco Salas-Molina, 2020. "A Process Oriented MCDM Approach to Construct a Circular Economy Composite Index," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    5. John Hartwick, 1977. "Intergenerational Equity and the Investment of Rents from Exhaustible Resources in a Two Sector Model," Working Paper 281, Economics Department, Queen's University.
    6. Hanan Alhaddi, 2015. "Triple Bottom Line and Sustainability: A Literature Review," Business and Management Studies, Redfame publishing, vol. 1(2), pages 6-10, September.
    7. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    8. Etxano, Iker & Villalba-Eguiluz, Unai, 2021. "Twenty-five years of social multi-criteria evaluation (SMCE) in the search for sustainability: Analysis of case studies," Ecological Economics, Elsevier, vol. 188(C).
    9. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    10. Mei Yang & Shah Nazir & Qingshan Xu & Shaukat Ali, 2020. "Deep Learning Algorithms and Multicriteria Decision-Making Used in Big Data: A Systematic Literature Review," Complexity, Hindawi, vol. 2020, pages 1-18, August.
    11. Yasmin, Mariam & Tatoglu, Ekrem & Kilic, Huseyin Selcuk & Zaim, Selim & Delen, Dursun, 2020. "Big data analytics capabilities and firm performance: An integrated MCDM approach," Journal of Business Research, Elsevier, vol. 114(C), pages 1-15.
    12. Munda, Giuseppe, 2004. "Social multi-criteria evaluation: Methodological foundations and operational consequences," European Journal of Operational Research, Elsevier, vol. 158(3), pages 662-677, November.
    13. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    14. John C. V. Pezzey, 1997. "Sustainability Constraints versus "Optimality" versus Intertemporal Concern, and Axioms versus Data," Land Economics, University of Wisconsin Press, vol. 73(4), pages 448-466.
    15. Pearce, David, 1974. "The economics of natural resource depletion," Resources Policy, Elsevier, vol. 1(1), pages 57-59, September.
    16. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    17. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    18. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    19. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Wenshuai Wu & Zeshui Xu & Gang Kou & Yong Shi, 2020. "Decision-Making Support for the Evaluation of Clustering Algorithms Based on MCDM," Complexity, Hindawi, vol. 2020, pages 1-17, May.
    21. Ananna Paul & Nagesh Shukla & Sanjoy Kumar Paul & Andrea Trianni, 2021. "Sustainable Supply Chain Management and Multi-Criteria Decision-Making Methods: A Systematic Review," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    22. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    23. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    24. Mohd. Ahmed & Javed Mallick & Saeed AlQadhi & Nabil Ben Kahla, 2020. "Development of Concrete Mixture Design Process Using MCDM Approach for Sustainable Concrete Quality Management," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    25. Martinez-Alier, Joan & Munda, Giuseppe & O'Neill, John, 1998. "Weak comparability of values as a foundation for ecological economics," Ecological Economics, Elsevier, vol. 26(3), pages 277-286, September.
    26. Sitorus, Fernando & Brito-Parada, Pablo R., 2020. "A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    27. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    28. Katharina Gompf & Marzia Traverso & Jörg Hetterich, 2021. "Using Analytical Hierarchy Process (AHP) to Introduce Weights to Social Life Cycle Assessment of Mobility Services," Sustainability, MDPI, vol. 13(3), pages 1-10, January.
    29. Neumayer, Eric, 2000. "On the methodology of ISEW, GPI and related measures: some constructive suggestions and some doubt on the 'threshold' hypothesis," Ecological Economics, Elsevier, vol. 34(3), pages 347-361, September.
    30. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    31. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    32. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    33. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.
    2. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    3. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
    6. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    7. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    8. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    9. Bompard, E.F. & Corgnati, S.P. & Grosso, D. & Huang, T. & Mietti, G. & Profumo, F., 2022. "Multidimensional assessment of the energy sustainability and carbon pricing impacts along the Belt and Road Initiative," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    11. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    12. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    13. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Itziar Barinaga-Rementeria & Iker Etxano, 2020. "Weak or Strong Sustainability in Rural Land Use Planning? Assessing Two Case Studies through Multi-Criteria Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Alok K. Pandey & R. Krishankumar & Dragan Pamucar & Fausto Cavallaro & Abbas Mardani & Samarjit Kar & K. S. Ravichandran, 2021. "A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty," Energies, MDPI, vol. 14(20), pages 1-27, October.
    16. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    17. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    18. Krishankumar, Raghunathan & Pamucar, Dragan & Deveci, Muhammat & Aggarwal, Manish & Ravichandran, Kattur Soundarapandian, 2022. "Assessment of renewable energy sources for smart cities’ demand satisfaction using multi-hesitant fuzzy linguistic based choquet integral approach," Renewable Energy, Elsevier, vol. 189(C), pages 1428-1442.
    19. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    20. Sitorus, Fernando & Brito-Parada, Pablo R., 2020. "A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11629-:d:661389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.