IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11450-d658053.html
   My bibliography  Save this article

Review of Transit Data Sources: Potentials, Challenges and Complementarity

Author

Listed:
  • Liping Ge

    (Institute of Information Systems, Leuphana Universität Lüneburg, 21335 Lüneburg, Germany)

  • Malek Sarhani

    (Institute of Information Systems, Universität Hamburg, 20146 Hamburg, Germany)

  • Stefan Voß

    (Institute of Information Systems, Universität Hamburg, 20146 Hamburg, Germany)

  • Lin Xie

    (Institute of Information Systems, Leuphana Universität Lüneburg, 21335 Lüneburg, Germany)

Abstract

Public transport has become one of the major transport options, especially when it comes to reducing motorized individual transport and achieving sustainability while reducing emissions, noise and so on. The use of public transport data has evolved and rapidly improved over the past decades. Indeed, the availability of data from different sources, coupled with advances in analytical and predictive approaches, has contributed to increased attention being paid to the exploitation of available data to improve public transport service. In this paper, we review the current state of the art of public transport data sources. More precisely, we summarize and analyze the potential and challenges of the main data sources. In addition, we show the complementary aspects of these data sources and how to merge them to broaden their contributions and face their challenges. This is complemented by an information management framework to enhance the use of data sources. Specifically, we seek to bridge the gap between traditional data sources and recent ones, present a unified overview of them and show how they can all leverage recent advances in data-driven methods and how they can help achieve a balance between transit service and passenger behavior.

Suggested Citation

  • Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11450-:d:658053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe Zúñiga & Juan Carlos Muñoz & Ricardo Giesen, 2021. "Estimation and prediction of dynamic matrix travel on a public transport corridor using historical data and real-time information," Public Transport, Springer, vol. 13(1), pages 59-80, March.
    2. Hadas, Yuval, 2013. "Assessing public transport systems connectivity based on Google Transit data," Journal of Transport Geography, Elsevier, vol. 33(C), pages 105-116.
    3. Böcker, Lars & Dijst, Martin & Faber, Jan, 2016. "Weather, transport mode choices and emotional travel experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 360-373.
    4. Li He & Martin Trépanier & Bruno Agard, 2021. "Space–time classification of public transit smart card users’ activity locations from smart card data," Public Transport, Springer, vol. 13(3), pages 579-595, October.
    5. Timothy F. Welch & Alyas Widita, 2019. "Big data in public transportation: a review of sources and methods," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 795-818, November.
    6. Julio, Nikolas & Giesen, Ricardo & Lizana, Pedro, 2016. "Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms," Research in Transportation Economics, Elsevier, vol. 59(C), pages 250-257.
    7. Candace Brakewood & Kari Watkins, 2019. "A literature review of the passenger benefits of real-time transit information," Transport Reviews, Taylor & Francis Journals, vol. 39(3), pages 327-356, May.
    8. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    9. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
    10. Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
    11. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    12. Yanshuo Sun & Jungang Shi & Paul M. Schonfeld, 2016. "Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro," Public Transport, Springer, vol. 8(3), pages 341-363, December.
    13. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    14. Michael Siebert & David Ellenberger, 2020. "Validation of automatic passenger counting: introducing the t-test-induced equivalence test," Transportation, Springer, vol. 47(6), pages 3031-3045, December.
    15. Kaplan, Sigal & Moraes Monteiro, Mayara & Anderson, Marie Karen & Nielsen, Otto Anker & Medeiros Dos Santos, Enilson, 2017. "The role of information systems in non-routine transit use of university students: Evidence from Brazil and Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 34-48.
    16. Patrick Bonnel & Marcela Munizaga, 2018. "Transport survey methods - in the era of big data facing new and old challenges," Post-Print halshs-02115957, HAL.
    17. Ahmad Tavassoli & Mahmoud Mesbah & Mark Hickman, 2018. "Application of smart card data in validating a large-scale multi-modal transit assignment model," Public Transport, Springer, vol. 10(1), pages 1-21, May.
    18. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
    19. Egu, Oscar & Bonnel, Patrick, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
    20. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    21. Urbanek, Anna, 2021. "Potential of modal shift from private cars to public transport: A survey on the commuters’ attitudes and willingness to switch – A case study of Silesia Province, Poland," Research in Transportation Economics, Elsevier, vol. 85(C).
    22. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    23. Barabino, Benedetto & Di Francesco, Massimo & Mozzoni, Sara, 2015. "Rethinking bus punctuality by integrating Automatic Vehicle Location data and passenger patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 84-95.
    24. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    25. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    26. Michael Siebert & David Ellenberger, 0. "Validation of automatic passenger counting: introducing the t-test-induced equivalence test," Transportation, Springer, vol. 0, pages 1-15.
    27. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    28. Benedetto Barabino & Cristian Lai & Alessandro Olivo, 2020. "Fare evasion in public transport systems: a review of the literature," Public Transport, Springer, vol. 12(1), pages 27-88, March.
    29. Wei Yu & Hua Bai & Jun Chen & Xingchen Yan, 2019. "Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    30. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    31. Mintsis, G. & Basbas, S. & Papaioannou, P. & Taxiltaris, C. & Tziavos, I. N., 2004. "Applications of GPS technology in the land transportation system," European Journal of Operational Research, Elsevier, vol. 152(2), pages 399-409, January.
    32. Alexander Webb & Pramesh Kumar & Alireza Khani, 2020. "Estimation of passenger waiting time using automatically collected transit data," Public Transport, Springer, vol. 12(2), pages 299-311, June.
    33. N. Nima Haghighi & Xiaoyue Cathy Liu & Ran Wei & Wenwen Li & Hu Shao, 2018. "Using Twitter data for transit performance assessment: a framework for evaluating transit riders’ opinions about quality of service," Public Transport, Springer, vol. 10(2), pages 363-377, August.
    34. Meina Zheng & Feng Liu & Xiucheng Guo & Xinyue Lei, 2019. "Assessing the Distribution of Commuting Trips and Jobs-Housing Balance Using Smart Card Data: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    35. Sun, Zhanbo & Zan, Bin & Ban, Xuegang (Jeff) & Gruteser, Marco, 2013. "Privacy protection method for fine-grained urban traffic modeling using mobile sensors," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 50-69.
    36. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    37. Åse Jevinger & Jan A. Persson, 2019. "Exploring the potential of using real-time traveler data in public transport disturbance management," Public Transport, Springer, vol. 11(2), pages 413-441, August.
    38. Julia Numrich & Sascha Ruja & Stefan Voß, 2012. "Global Navigation Satellite System based tolling: state-of-the-art," Netnomics, Springer, vol. 13(2), pages 93-123, July.
    39. Felix Gündling & Florian Hopp & Karsten Weihe, 2020. "Efficient monitoring of public transport journeys," Public Transport, Springer, vol. 12(3), pages 631-645, October.
    40. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    41. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Kim, Inhi & Young, William, 2018. "Modelling the net traffic congestion impact of bus operations in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 1-12.
    42. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    43. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    44. Koragot Kaeoruean & Santi Phithakkitnukoon & Merkebe Getachew Demissie & Lina Kattan & Carlo Ratti, 2020. "Analysis of demand–supply gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada," Public Transport, Springer, vol. 12(3), pages 483-516, October.
    45. Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    2. Tianxing Dai & Brian D. Taylor, 2023. "Three’s a crowd? Examining evolving public transit crowding standards amidst the COVID-19 pandemic," Public Transport, Springer, vol. 15(2), pages 321-341, June.
    3. Atsushi Iimi, 2023. "Estimating the demand for informal public transport: evidence from Antananarivo, Madagascar," Public Transport, Springer, vol. 15(1), pages 129-168, March.
    4. Zack Aemmer & Andisheh Ranjbari & Don MacKenzie, 2022. "Measurement and classification of transit delays using GTFS-RT data," Public Transport, Springer, vol. 14(2), pages 263-285, June.
    5. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    6. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    7. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    8. Dibya Nandan Mishra & Rajeev Kumar Panda, 2023. "Decoding customer experiences in rail transport service: application of hybrid sentiment analysis," Public Transport, Springer, vol. 15(1), pages 31-60, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    2. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    3. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    4. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    5. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    6. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    7. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    10. Nadav Shalit & Michael Fire & Eran Ben-Elia, 2023. "A supervised machine learning model for imputing missing boarding stops in smart card data," Public Transport, Springer, vol. 15(2), pages 287-319, June.
    11. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    12. Zack Aemmer & Andisheh Ranjbari & Don MacKenzie, 2022. "Measurement and classification of transit delays using GTFS-RT data," Public Transport, Springer, vol. 14(2), pages 263-285, June.
    13. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    14. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    15. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    16. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
    17. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    18. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    19. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    20. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11450-:d:658053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.