IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v135y2020icp264-279.html
   My bibliography  Save this article

Weather, travel mode choice, and impacts on subway ridership in Beijing

Author

Listed:
  • Wu, Jingwen
  • Liao, Hua

Abstract

Understanding the impact of weather on travel behavior provides insight into building a reliable and resilient transport system. This study uses a survey on residents and subway ridership data from 2014 to 2018 in Beijing to explore the relationship between weather and travel behavior. The results indicate that extreme weather events can affect recreational travel greatly, reduce travel demand, and change travel modes as well. The respondents are inclined to choose subway or cars rather than buses and bicycles under inclement weather days. The analysis of subway ridership confirms that weekends’ trips are more sensitive to weather conditions. Monthly temperature change shows a bigger effect on ridership than daily temperature change. A one-degree increase in effective temperature increases ridership by about 0.5% on weekends, while heavy rain reduces ridership by about 8%. Wind speed and air pollution show significantly negative but small effects on ridership on weekends. Besides, there is a non-linear relationship between temperature and ridership on weekends. These findings suggest that subway is less vulnerable to inclement weather and can be complementary to other travel modes. However, prevention measures are necessary for the subway system to face threats from heavy rain.

Suggested Citation

  • Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
  • Handle: RePEc:eee:transa:v:135:y:2020:i:c:p:264-279
    DOI: 10.1016/j.tra.2020.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641930919X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalkstein, Adam J & Kuby, Michael & Gerrity, Daniel & Clancy, James J, 2009. "An analysis of air mass effects on rail ridership in three US cities," Journal of Transport Geography, Elsevier, vol. 17(3), pages 198-207.
    2. Böcker, Lars & Dijst, Martin & Faber, Jan, 2016. "Weather, transport mode choices and emotional travel experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 360-373.
    3. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    4. Datla, Sandeep & Sharma, Satish, 2008. "Impact of cold and snow on temporal and spatial variations of highway traffic volumes," Journal of Transport Geography, Elsevier, vol. 16(5), pages 358-372.
    5. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    6. Brodeur, Abel & Nield, Kerry, 2018. "An empirical analysis of taxi, Lyft and Uber rides: Evidence from weather shocks in NYC," Journal of Economic Behavior & Organization, Elsevier, vol. 152(C), pages 1-16.
    7. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    8. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
    9. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    10. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    11. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "Investigating the impacts of weather variability on individual’s daily activity–travel patterns: A comparison between commuters and non-commuters in Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 47-64.
    12. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    15. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    16. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    17. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    18. Andrey, Jean, 2010. "Long-term trends in weather-related crash risks," Journal of Transport Geography, Elsevier, vol. 18(2), pages 247-258.
    19. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2014. "Examining the impact of weather variability on non-commuters’ daily activity–travel patterns in different regions of Sweden," Journal of Transport Geography, Elsevier, vol. 39(C), pages 36-48.
    20. Javier Anta & José B. Pérez-López & Ana Martínez-Pardo & Margarita Novales & Alfonso Orro, 2016. "Influence of the weather on mode choice in corridors with time-varying congestion: a mixed data study," Transportation, Springer, vol. 43(2), pages 337-355, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhentao Li & Tianzi Li, 2022. "How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China," IJERPH, MDPI, vol. 19(11), pages 1-20, June.
    2. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    4. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    5. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    6. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    7. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    8. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
    9. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    10. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    11. Lin, Shichao & Zhu, Songwei & Li, Xiangmin & Li, Ruimin, 2022. "Effects of strict vehicle restrictions on various travel modes: A case study of Zhengzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 310-323.
    12. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    2. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    3. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    4. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    5. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Wessel, Jan, 2020. "Using weather forecasts to forecast whether bikes are used," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 537-559.
    7. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    8. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    9. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    10. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    11. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    12. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    13. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    14. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    16. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    17. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    18. Kimpton, Anthony & Loginova, Julia & Pojani, Dorina & Bean, Richard & Sigler, Thomas & Corcoran, Jonathan, 2022. "Weather to scoot? How weather shapes shared e-scooter ridership patterns," Journal of Transport Geography, Elsevier, vol. 104(C).
    19. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    20. Anton Galich & Simon Nieland & Barbara Lenz & Jan Blechschmidt, 2021. "How Would We Cycle Today If We Had the Weather of Tomorrow? An Analysis of the Impact of Climate Change on Bicycle Traffic," Sustainability, MDPI, vol. 13(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:135:y:2020:i:c:p:264-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.