IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10590-d642174.html
   My bibliography  Save this article

Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance

Author

Listed:
  • Zaixun Ling

    (State Grid Hubei Electric Power Research Institute, Wuhan 430015, China)

  • Yibo Cui

    (State Grid Hubei Electric Power Research Institute, Wuhan 430015, China)

  • Jingwen Zheng

    (State Grid Hubei Electric Power Research Institute, Wuhan 430015, China)

  • Yu Guo

    (State Grid Hubei Electric Power Research Institute, Wuhan 430015, China)

  • Wanli Cai

    (State Grid Hubei Electric Power Research Institute, Wuhan 430015, China)

  • Xiaofei Chen

    (School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jiaqi Yuan

    (School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wenjie Gang

    (School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

A 100% renewable energy system (RES) satisfies a user’s energy demand using only renewable energy, which is an important energy supply in China given that the government aims to realize carbon neutrality by 2060. The design and operation of 100% RESs in different areas would vary significantly due to the impacts of climates and geographical features. This study aimed to investigate the economic and environmental performance of 100% RESs for residential communities in different areas of China. In total, 30 typical cities were chosen based on the climate characteristics and the availability of renewable energy resources. The genetic algorithm was selected to obtain the optimal design of the 100% RES in each area by taking the minimum total annual cost and the minimum CO 2 emissions as optimization objectives. The results showed that 100% RESs were dominated by solar energy and biomass. The investment could be recovered in 8 years if the economic performance was optimized in most areas, but the payback period became longer when the 100% RES was optimized when considering environmental performance. The emissions could be reduced by 86–99% for CO 2 and 64–97% for NO x . The results of this study would provide data support for the investment of 100% RESs in rural or suburban areas of China.

Suggested Citation

  • Zaixun Ling & Yibo Cui & Jingwen Zheng & Yu Guo & Wanli Cai & Xiaofei Chen & Jiaqi Yuan & Wenjie Gang, 2021. "Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10590-:d:642174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    2. Sokolnikova, P. & Lombardi, P. & Arendarski, B. & Suslov, K. & Pantaleo, A.M. & Kranhold, M. & Komarnicki, P., 2020. "Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units," Renewable Energy, Elsevier, vol. 155(C), pages 979-989.
    3. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    4. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    5. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    7. Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
    8. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    9. Huber, Matthias & Weissbart, Christoph, 2015. "On the optimal mix of wind and solar generation in the future Chinese power system," Energy, Elsevier, vol. 90(P1), pages 235-243.
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    12. Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
    13. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    14. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    15. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," Applied Energy, Elsevier, vol. 255(C).
    16. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    17. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    18. Li, Bei & Miao, Hongzhi & Li, Jiangchen, 2021. "Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology," Applied Energy, Elsevier, vol. 283(C).
    19. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    20. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
    2. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    11. Mark Z. Jacobson & Anna-Katharina von Krauland & Zachary F.M. Burton & Stephen J. Coughlin & Caitlin Jaeggli & Daniel Nelli & Alexander J. H. Nelson & Yanbo Shu & Miles Smith & Chor Tan & Connery D. W, 2020. "Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS)," Energies, MDPI, vol. 13(18), pages 1-40, September.
    12. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    18. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    19. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10590-:d:642174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.