IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10005-d630403.html
   My bibliography  Save this article

Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt

Author

Listed:
  • Xiaoke Zhao

    (School of Business, Changzhou University, Changzhou 213100, China
    Huaide College, Changzhou University, Jingjiang 214500, China)

  • Xuhui Ding

    (School of Finance and Economics, Institute of Industrial Economics, Jiangsu University, Zhenjiang 212013, China)

  • Liang Li

    (School of Business, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

The green transformation of the manufacturing industry is crucial for high-quality development of the Yangtze River Economic Belt, and environmental regulation and technological innovation may play key roles. Considering the undesirable output of the manufacturing industry, this paper adopted the undesirable-SE-SBM Model to measure the green transformation efficiency, which can reflect the core transformation performance. On this basis, this paper respectively adopted system generalized method of moments (SYS-GMM) and differential generalized method of moments (DIF-GMM) to explore the driving factors of green transformation, which fully considered the lag variable of transformation efficiency. The estimated results of green transformation showed that the efficiency of the Yangtze River Economic Belt has maintained an overall growth trend, while that of the eastern regions was higher than that of the central and western regions. The regional difference of transformation efficiencies showed a trend of convergence first and then expansion, however, a few regions such as Chongqing have achieved leapfrog development. The estimated results of driving factors showed the first-stage lag affected the green transformation positively, while the second-stage lag had a significantly negative effect. The ratchet effect and cumulative effect led to the continued efforts on green transformation, however, the timeliness of policy might cause a rebound in practice. As mentioned in green paradox, the environmental regulation had a negative effect, which might bring compliance costs. The technology innovation level indeed promoted the green transformation of manufacturing, but the scientific research investment did not exert the expected positive effect, while the utilization of many research funds lacked market orientation. Economic development level had a negative effect on green transformation, and it would play a positive effect only if it reached a certain stage. The industrialization and urbanization affected the efficiency positively, and the external dependence degree had a significant negative effect. It was not clear whether foreign direct investment (FDI) brought a pollution haven or pollution halo effect. In view of these conclusions, local governments should strictly enforce environmental regulations, build the regional green innovation system, improve marketization of research funds, optimize the export structure, and promote new urbanization and new industrialization.

Suggested Citation

  • Xiaoke Zhao & Xuhui Ding & Liang Li, 2021. "Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10005-:d:630403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2018. "Can Direct Regulations Spur Innovations in Environmental Technologies? A Study on Firm‐Level Patenting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 338-371, April.
    2. Barrows, Geoffrey & Ollivier, Hélène, 2021. "Foreign demand, developing country exports, and CO2 emissions: Firm-level evidence from India," Journal of Development Economics, Elsevier, vol. 149(C).
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Meléndez-Jiménez, Miguel A. & Polanski, Arnold, 2020. "Dirty neighbors — Pollution in an interlinked world," Energy Economics, Elsevier, vol. 86(C).
    5. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    6. Perry Sadorsky, 2014. "The Effect of Urbanization and Industrialization on Energy Use in Emerging Economies: Implications for Sustainable Development," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(2), pages 392-409, April.
    7. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    8. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    9. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    10. Tsurumi Tetsuya & Managi Shunsuke & Hibiki Akira, 2015. "Do Environmental Regulations Increase Bilateral Trade Flows?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 15(4), pages 1549-1577, October.
    11. Stefan Cibulka & Stefan Giljum, 2020. "Towards a Comprehensive Framework of the Relationships between Resource Footprints, Quality of Life, and Economic Development," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    12. Alam, M. Shahid, 2006. "Economic Growth with Energy," MPRA Paper 1260, University Library of Munich, Germany.
    13. Teck Yong Tan, 2020. "Knowledge as Property Rights Under the Ratchet Effect of Innovation [The Management of Innovation]," Journal of the European Economic Association, European Economic Association, vol. 18(5), pages 2677-2714.
    14. Stefano Bosi & David Desmarchelier, 2017. "Are the Laffer curve and the green paradox mutually exclusive?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 19(5), pages 937-956, October.
    15. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    18. Brian R. Copeland & M. Scott Taylor, 1994. "North-South Trade and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 755-787.
    19. Jürgen Kruse & Heike Wetzel, 2016. "Editor's Choice Energy Prices, Technological Knowledge, and Innovation in Green Energy Technologies: a Dynamic Panel Analysis of European Patent Data," CESifo Economic Studies, CESifo Group, vol. 62(3), pages 397-425.
    20. Steven Poelhekke & Frederick Ploeg, 2015. "Green Havens and Pollution Havens," The World Economy, Wiley Blackwell, vol. 38(7), pages 1159-1178, July.
    21. Marc Gronwald & Ngo Long & Luise Roepke, 2017. "Simultaneous Supplies of Dirty Energy and Capacity Constrained Clean Energy: Is There a Green Paradox?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 47-64, September.
    22. Hille, Erik & Shahbaz, Muhammad & Moosa, Imad, 2019. "The impact of FDI on regional air pollution in the Republic of Korea: A way ahead to achieve the green growth strategy?," Energy Economics, Elsevier, vol. 81(C), pages 308-326.
    23. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    24. Svenn Jensens & Kristina Mohlin & Karen Pittel & Thomas Sterner, 2015. "An Introduction to the Green Paradox: The Unintended Consequences of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 246-265.
    25. Janine Fleith Medeiros & Gabriel Vidor & José Luís Duarte Ribeiro, 2018. "Driving Factors for the Success of the Green Innovation Market: A Relationship System Proposal," Journal of Business Ethics, Springer, vol. 147(2), pages 327-341, January.
    26. Kay H. Hofmann & Gregory Theyel & Craig H. Wood, 2012. "Identifying Firm Capabilities as Drivers of Environmental Management and Sustainability Practices – Evidence from Small and Medium‐Sized Manufacturers," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 530-545, December.
    27. Renyan Long & Hangyuan Guo & Danting Zheng & Ronghua Chang & Sanggyun Na, 2020. "Research on the Measurement, Evolution, and Driving Factors of Green Innovation Efficiency in Yangtze River Economic Belt: A Super-SBM and Spatial Durbin Model," Complexity, Hindawi, vol. 2020, pages 1-14, October.
    28. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    29. Eunmi Lee, 2020. "Environmental Regulation and Financial Performance in China: An Integrated View of the Porter Hypothesis and Institutional Theory," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    30. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    31. Ali, Syed Ahtsham & Alharthi, Majed & Hussain, Hafezali Iqbal & Rasul, Farhat & Hanif, Imran & Haider, Jahanzaib & Ullah, Saad & ur Rahman, Saeed & Abbas, Qaiser, 2021. "A clean technological innovation and eco-efficiency enhancement: A multi-index assessment of sustainable economic and environmental management," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    32. Bashir, Muhammad Adnan & Sheng, Bin & Doğan, Buhari & Sarwar, Suleman & Shahzad, Umer, 2020. "Export product diversification and energy efficiency: Empirical evidence from OECD countries," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 232-243.
    33. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    34. Mohamed Abdouli & Sami Hammami, 2017. "Economic growth, FDI inflows and their impact on the environment: an empirical study for the MENA countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 121-146, January.
    35. Muhammad Shahbaz & Naceur Khraief & Mantu Kumar Mahalik, 2020. "Investigating the environmental Kuznets’s curve for Sweden: evidence from multivariate adaptive regression splines (MARS)," Empirical Economics, Springer, vol. 59(4), pages 1883-1902, October.
    36. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    37. Alam, Ashraful & Uddin, Moshfique & Yazdifar, Hassan, 2019. "Institutional determinants of R&D investment: Evidence from emerging markets," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 34-44.
    38. Wang, Miao & Feng, Chao, 2021. "The win-win ability of environmental protection and economic development during China's transition," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    39. Bingni Deng & Julia Affolderbach & Pauline Deutz, 2020. "Industrial Restructuring through Eco-Transformation: Green Industrial Transfer in Changsha–Zhuzhou–Xiangtan, Hunan Province," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    40. Vieira, Leticia Canal & Longo, Mariolina & Mura, Matteo, 2021. "Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis," Energy Policy, Elsevier, vol. 156(C).
    41. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    42. Arne Steinkraus, 2019. "A Synthetic Control Assessment of the Green Paradox: The Role of Climate Action Plans," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 545-570, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haonan Yang & Liang Chen & Huan Huang & Panyu Tang, 2022. "Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    2. Jing Xu & Dong Chen & Rongrong Liu & Maoxian Zhou & Yunxiao Kong, 2021. "Environmental Regulation, Technological Innovation, and Industrial Transformation: An Empirical Study Based on City Function in China," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Rui Zhang & Yong Ma & Jie Ren, 2022. "Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(15), pages 1-24, July.
    4. Xiao Han & Yining Chen & Hehua Zhao, 2023. "Temporal–Spatial Evolution, Influencing Factors, and Driving Mechanisms of Environmental Regulation Performance Disparities: Evidence from China," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    5. Liang Li & Yanghong Wang & Meixuen Tan & Huaping Sun & Bangzhu Zhu, 2023. "Effect of Environmental Regulation on Energy-Intensive Enterprises’ Green Innovation Performance," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    6. Jinfa Li & Ruijie Qin & Hongbing Jiang, 2022. "Measurement of Innovation Efficiency in China’s Electronics and Communication Equipment Manufacturing Industry-Based on Dynamic Network SBM Model," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    7. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    8. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Min Zhang & Yu Su & Peng Zhu, 2022. "Will Green Innovation Bring about the Financial Spillover Effect? Evidence from China’s High-Carbon Listed Companies," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    10. Lilian Ding & Yan Liao & Congmou Zhu & Qiwei Zheng & Ke Wang, 2023. "Multiscale Analysis of the Effects of Landscape Pattern on the Trade-Offs and Synergies of Ecosystem Services in Southern Zhejiang Province, China," Land, MDPI, vol. 12(5), pages 1-18, April.
    11. Yuanshuo Xu & Jiahe Liang & Zhaoyingzi Dong & Minjun Shi, 2022. "Can Environmental Regulation Promote Green Innovation and Productivity? The Moderating Role of Government Interventions in Urban China," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    12. Xiaohua Yu & Yuan Qi & Longzhen Yu & Yuanyuan He, 2022. "Temporal and Spatial Evolution of Coupling Coordination Degree of Industrial Innovation Ecosystem—From the Perspective of Green Transformation," Sustainability, MDPI, vol. 14(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    2. Lee, Hsuan-Shih, 2022. "Integrating SBM model and Super-SBM model: a one-model approach," Omega, Elsevier, vol. 113(C).
    3. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Marcel Clermont & Julia Schaefer, 2019. "Identification of Outliers in Data Envelopment Analysis," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(4), pages 475-496, October.
    5. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    6. Tone, Kaoru & Toloo, Mehdi & Izadikhah, Mohammad, 2020. "A modified slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 287(2), pages 560-571.
    7. Javad Gerami & Mohammad Reza Mozaffari & P. F. Wanke & Henrique Correa, 2022. "A novel slacks-based model for efficiency and super-efficiency in DEA-R," Operational Research, Springer, vol. 22(4), pages 3373-3410, September.
    8. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    9. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    10. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    11. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    12. Maria Elisabete Duarte Neves & Maria Do Castelo Gouveia & Catarina Alexandra Neves Proença, 2020. "European Bank’s Performance and Efficiency," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    13. Zhen Shi & Fengping Wu & Huinan Huang & Xinrui Sun & Lina Zhang, 2019. "Comparing Economics, Environmental Pollution and Health Efficiency in China," IJERPH, MDPI, vol. 16(23), pages 1-30, December.
    14. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    15. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    16. Ying, Ying & Wang, Shixiang & Liu, Yang, 2022. "Make bricks without straw: Eco-innovation for resource-constrained firms in emerging markets," Technovation, Elsevier, vol. 114(C).
    17. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    18. Chia-Nan Wang & Jen-Der Day & Nguyen Thi Kim Lien & Luu Quoc Chien, 2018. "Integrating the Additive Seasonal Model and Super-SBM Model to Compute the Efficiency of Port Logistics Companies in Vietnam," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    19. Josef Jablonsky, 2022. "Individual and team efficiency: a case of the National Hockey League," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 479-494, June.
    20. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10005-:d:630403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.