IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5612-d556585.html
   My bibliography  Save this article

The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems

Author

Listed:
  • Shu-Yuan Pan

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 10617, Taiwan)

  • Cheng-Di Dong

    (Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan)

  • Jenn-Fang Su

    (Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 251301, Taiwan)

  • Po-Yen Wang

    (Department of Civil Engineering, Widener University, Chester, PA 19013, USA)

  • Chiu-Wen Chen

    (Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan)

  • Jo-Shu Chang

    (Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung City 407224, Taiwan
    Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan)

  • Hyunook Kim

    (School of Environmental Engineering, University of Seoul, Seoul 02504, Korea)

  • Chin-Pao Huang

    (Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA)

  • Chang-Mao Hung

    (Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan)

Abstract

Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N 2 O and CO 2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.

Suggested Citation

  • Shu-Yuan Pan & Cheng-Di Dong & Jenn-Fang Su & Po-Yen Wang & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems," Sustainability, MDPI, vol. 13(10), pages 1-34, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5612-:d:556585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominic Woolf & James E. Amonette & F. Alayne Street-Perrott & Johannes Lehmann & Stephen Joseph, 2010. "Sustainable biochar to mitigate global climate change," Nature Communications, Nature, vol. 1(1), pages 1-9, December.
    2. Nikolas Hagemann & Stephen Joseph & Hans-Peter Schmidt & Claudia I. Kammann & Johannes Harter & Thomas Borch & Robert B. Young & Krisztina Varga & Sarasadat Taherymoosavi & K. Wade Elliott & Amy McKen, 2017. "Organic coating on biochar explains its nutrient retention and stimulation of soil fertility," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Rong Huang & Bing Li & Yulan Chen & Qi Tao & Qiang Xu & Denghong Wen & Xuesong Gao & Qiquan Li & Xiaoyan Tang & Changquan Wang, 2022. "Biochar Application Increases Labile Carbon and Inorganic Nitrogen Supply in a Continuous Monocropping Soil," Land, MDPI, vol. 11(4), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratnajit Saha & Lakshman Galagedara & Raymond Thomas & Muhammad Nadeem & Kelly Hawboldt, 2020. "Investigating the Influence of Biochar Amendment on the Physicochemical Properties of Podzolic Soil," Agriculture, MDPI, vol. 10(10), pages 1-29, October.
    2. Anders Hansson & Simon Haikola & Mathias Fridahl & Pius Yanda & Edmund Mabhuye & Noah Pauline, 2021. "Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5182-5214, April.
    3. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    4. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    5. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    6. Solinas, Stefania & Tiloca, Maria Teresa & Deligios, Paola A. & Cossu, Marco & Ledda, Luigi, 2021. "Carbon footprints and social carbon cost assessments in a perennial energy crop system: A comparison of fertilizer management practices in a Mediterranean area," Agricultural Systems, Elsevier, vol. 186(C).
    7. Ning Zeng & Anthony King & Ben Zaitchik & Stan Wullschleger & Jay Gregg & Shaoqiang Wang & Dan Kirk-Davidoff, 2013. "Carbon sequestration via wood harvest and storage: An assessment of its harvest potential," Climatic Change, Springer, vol. 118(2), pages 245-257, May.
    8. Marli Vermooten & Muhammad Nadeem & Mumtaz Cheema & Raymond Thomas & Lakshman Galagedara, 2019. "Temporal Effects of Biochar and Dairy Manure on Physicochemical Properties of Podzol: Case from a Silage-Corn Production Trial in Boreal Climate," Agriculture, MDPI, vol. 9(8), pages 1-14, August.
    9. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    10. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    11. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    12. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    13. repec:mth:jas888:v:6:y:2018:i:3:p:1-33 is not listed on IDEAS
    14. Jhónatan Reyes-Escobar & Erick Zagal & Marco Sandoval & Rodrigo Navia & Cristina Muñoz, 2015. "Development of a Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions," Sustainability, MDPI, vol. 7(10), pages 1-12, October.
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    16. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Shaukat, Muhammad & Muhammad, Sher & Maas, Ellen D.V.L. & Khaliq, Tasneem & Ahmad, Ashfaq, 2022. "Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model," Ecological Modelling, Elsevier, vol. 466(C).
    18. JoungDu Shin & Eunjung Choi & EunSuk Jang & Seung Gil Hong & SangRyong Lee & Balasubramani Ravindran, 2018. "Adsorption Characteristics of Ammonium Nitrogen and Plant Responses to Biochar Pellet," Sustainability, MDPI, vol. 10(5), pages 1-1, April.
    19. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Evan A.N. Marks & Vasiliki Kinigopoulou & Hanene Akrout & Ahmed Amine Azzaz & Charalampos Doulgeris & Salah Jellali & Carlos Rad & Paula Sánchez Zulueta & Evangelos Tziritis & Leila El-Bassi & Camélia, 2020. "Potential for Production of Biochar-Based Fertilizers from Olive Mill Waste in Mediterranean Basin Countries: An Initial Assessment for Spain, Tunisia, and Greece," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    21. Sánchez-Sánchez, Consolación & González-González, Almudena & Cuadros-Salcedo, Francisco & Gómez-Serrano, Vicente & Cuadros-Blázquez, Francisco, 2019. "Charcoal as a bacteriological adherent for biomethanation of organic wastes," Energy, Elsevier, vol. 179(C), pages 336-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5612-:d:556585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.