IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3765-d354552.html
   My bibliography  Save this article

Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms

Author

Listed:
  • Luís Loures

    (VALORIZA—Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
    CinTurs—Research Centre for Tourism, Sustainability and Well-being, University of Algarve, 8005-139 Faro, Portugal)

  • Alejandro Chamizo

    (Fomento de Técnicas Extremeñas, SL, 06011 Badajoz, Spain)

  • Paulo Ferreira

    (VALORIZA—Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal)

  • Ana Loures

    (VALORIZA—Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal)

  • Rui Castanho

    (VALORIZA—Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
    Faculty of Applied Sciences, WSB University, 41-300 Da browa Górnicza, Poland)

  • Thomas Panagopoulos

    (Fomento de Técnicas Extremeñas, SL, 06011 Badajoz, Spain)

Abstract

While the world population continues to grow, increasing the need to produce more and better-quality food, climate change, urban growth and unsustainable agricultural practices accelerate the loss of available arable land, compromising the sustainability of agricultural lands both in terms of productivity and environmental resilience, and causing serious problems for the production-consumption balance. This scenario highlights the urgent need for agricultural modernization as a crucial step to face forthcoming difficulties. Precision agriculture techniques appear as a feasible option to help solve these problems. However, their use needs to be reinvented and tested according to different parameters, in order to define both the environmental and the economic impact of these new technologies not only on agricultural production, but also on agricultural sustainability. This paper intends, therefore, to contribute to a better understanding of the impact of precision agriculture through the use of unmanned aerial vehicles (UAV)/remotely piloted aircraft systems (RPAS) and normalized difference vegetation index (NDVI) techniques in small Mediterranean farms. We present specific data obtained through the application of the aforementioned techniques in three farms located along the Portuguese-Spanish border, considering three parameters (seeding failure, differentiated irrigation and differentiated fertilization) in order to determine not only the ecological benefits of these methods, but also their economic and productivity aspects. The obtained results, based on these methods, highlight the fact that an efficient combination of UAV/RPAS and NDVI techniques allows for important economic savings in productivity factors, thus promoting a sustainable agriculture both in ecological and economic terms. Additionally, contrary to what is generally defended, even in small farms, as the ones assessed in this study (less than 50 ha), the costs associated with the application of the aforementioned precision agriculture processes are largely surpassed by the economic gains achieved with their application, regardless of the notorious environmental benefits introduced by the reduction of crucial production inputs as water and fertilizers.

Suggested Citation

  • Luís Loures & Alejandro Chamizo & Paulo Ferreira & Ana Loures & Rui Castanho & Thomas Panagopoulos, 2020. "Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3765-:d:354552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dolgonosov, Boris M., 2016. "Knowledge production and world population dynamics," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 127-141.
    2. Schimmelpfennig, David & Ebel, Robert, 2011. "On the Doorstep of the Information Age: Recent Adoption of Precision Agriculture," Economic Information Bulletin 291945, United States Department of Agriculture, Economic Research Service.
    3. José Rato Nunes & Luís Loures & António Lopez-Piñeiro & Ana Loures & Eric Vaz, 2016. "Using GIS towards the Characterization and Soil Mapping of the Caia Irrigation Perimeter," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    4. Ebel, Robert M. & Schimmelpfennig, David E., 2011. "The Information Age and Adoption of Precision Agriculture," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-1.
    5. Mateos, Luciano & Araus, José L., 2016. "Hydrological, engineering, agronomical, breeding and physiological pathways for the effective and efficient use of water in agriculture," Agricultural Water Management, Elsevier, vol. 164(P1), pages 190-196.
    6. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    7. Luís Loures & Ana Loures & José Nunes & Thomas Panagopoulos, 2015. "Landscape Valuation of Environmental Amenities throughout the Application of Direct and Indirect Methods," Sustainability, MDPI, vol. 7(1), pages 1-17, January.
    8. Luis Loures & Thomas Panagopoulos & Jon Bryan Burley, 2016. "Assessing user preferences on post-industrial redevelopment," Environment and Planning B, , vol. 43(5), pages 871-892, September.
    9. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chin-Ling Lee & Robert Strong & Kim E. Dooley, 2021. "Analyzing Precision Agriculture Adoption across the Globe: A Systematic Review of Scholarship from 1999–2020," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    2. Silvia Macchia, 2022. "Unbundling the information needs of new-generation agricultural companies," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2 Suppl.), pages 117-141.
    3. Gema Parra & Luis Joaquin Garcia-Lopez & José A. Piqueras & Roberto García, 2022. "Identification of Farmers’ Barriers to Implement Sustainable Management Practices in Olive Groves," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    4. Gheorghe-Gavrilă Hognogi & Ana-Maria Pop & Alexandra-Camelia Marian-Potra & Tania Someșfălean, 2021. "The Role of UAS–GIS in Digital Era Governance. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-31, October.
    5. Angeliki Kavga & Vasileios Thomopoulos & Pantelis Barouchas & Nikolaos Stefanakis & Aglaia Liopa-Tsakalidi, 2021. "Research on Innovative Training on Smart Greenhouse Technologies for Economic and Environmental Sustainability," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    6. Khadijeh Alibabaei & Eduardo Assunção & Pedro D. Gaspar & Vasco N. G. J. Soares & João M. L. P. Caldeira, 2022. "Real-Time Detection of Vine Trunk for Robot Localization Using Deep Learning Models Developed for Edge TPU Devices," Future Internet, MDPI, vol. 14(7), pages 1-16, June.
    7. Görkem Giray & Cagatay Catal, 2021. "Design of a Data Management Reference Architecture for Sustainable Agriculture," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    8. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís Loures & José Gama & José Rato Nunes & António Lopez-Piñeiro, 2017. "Assessing the Sodium Exchange Capacity in Rainfed and Irrigated Soils in the Mediterranean Basin Using GIS," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    2. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    3. MacDonald, James M. & Korb, Penni & Hoppe, Robert A., 2013. "Farm Size and the Organization of U.S. Crop Farming," Economic Research Report 262221, United States Department of Agriculture, Economic Research Service.
    4. Alina Petronela Alexoaei & Raluca Georgiana Robu & Valentin Cojanu & Dumitru Miron & Ana-Maria Holobiuc, 2022. "Good Practices in Reforming the Common Agricultural Policy to Support the European Green Deal – A Perspective on the Consumption of Pesticides and Fertilizers," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(60), pages 525-525, April.
    5. Canales, Elizabeth & Bergtold, Jason S. & Williams, Jeffery & Peterson, Jeffrey, 2015. "Estimating farmers’ risk attitudes and risk premiums for the adoption of conservation practices under different contractual arrangements: A stated choice experiment," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205640, Agricultural and Applied Economics Association.
    6. Schimmelpfennig, David & Lowenberg-DeBoer, James, 2020. "Farm types and precision agriculture adoption: crops, regions, soil variability, and farm size," Agri-Tech Economics Papers 304070, Harper Adams University, Land, Farm & Agribusiness Management Department.
    7. Rejesus, Roderick M. & Marra, Michele C. & Roberts, Roland K. & English, Burton C. & Larson, James A. & Paxton, Kenneth W, 2013. "Changes in Producers’ Perceptions of Within-Field Yield Variability after Adoption of Cotton Yield Monitors," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 45(2), pages 1-18, May.
    8. Griffin, Terry W. & Mark, Tyler B. & Ferrell, Shannon & Janzen, Todd & Ibendahl, Gregory & Bennett, Jeff D. & Maurer, Jacob L. & Shanoyan, Aleksan, 2016. "Big Data Considerations for Rural Property Professionals," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2015, pages 1-14.
    9. Fausti, Scott W. & Erickson, Bruce & Clay, David E. & Clay, Sharon A., 2021. "The Custom Service Industry’s Role in Precision Agriculture Adoption: A Literature Review," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    10. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    11. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    12. McFadden, Jonathan & Njuki, Eric & Griffin, Terry, 2023. "Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms," USDA Miscellaneous 333550, United States Department of Agriculture.
    13. Katherine Lacy & Peter F. Orazem & Skyler Schneekloth, 2023. "Measuring the American farm size distribution," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 219-242, January.
    14. Jonathan R. McFadden & Alicia Rosburg & Eric Njuki, 2022. "Information inputs and technical efficiency in midwest corn production: evidence from farmers' use of yield and soil maps," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 589-612, March.
    15. Ebel, Robert M. & Schimmelpfennig, David E., 2012. "Production Cost and the Sequential Adoption of Precision Technology," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124393, Agricultural and Applied Economics Association.
    16. Kangogo, Daniel & Dentoni, Domenico & Bijman, Jos, 2021. "Adoption of climate‐smart agriculture among smallholder farmers: Does farmer entrepreneurship matter?," Land Use Policy, Elsevier, vol. 109(C).
    17. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    18. Lambert, Dayton M. & Paudel, Krishna P. & Larson, James A., 2015. "Bundled Adoption of Precision Agriculture Technologies by Cotton Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-21, May.
    19. Tao Chen & Muhammad Rizwan & Azhar Abbas, 2022. "Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System," Land, MDPI, vol. 11(3), pages 1-18, February.
    20. Griffin, Terry W. & Mark, Tyler B. & Dobbins, Craig L. & Lowenberg-DeBoer, James M., 2014. "Estimating whole farm costs of conducting on-farm research on midwestern US corn and soybean farms: A linear programming approach," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(1), October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3765-:d:354552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.