IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3330-d347788.html
   My bibliography  Save this article

Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India

Author

Listed:
  • Guido Marseglia

    (Research Department, Link Campus University of Rome, Via del Casale di San Pio V, 44, 00165 Rome, Italy
    Department of Energy Engineering, University of Seville, 41004 Seville, Spain
    Instituto de Matemáticas de la Universidad de Sevilla, (IMUS), Universidad de Sevilla, Avenida Reina Mercedes, 41012 Seville, Spain)

  • Blanca Fernandez Vasquez-Pena

    (Department of Energy Engineering, University of Seville, 41004 Seville, Spain)

  • Carlo Maria Medaglia

    (Research Department, Link Campus University of Rome, Via del Casale di San Pio V, 44, 00165 Rome, Italy)

  • Ricardo Chacartegui

    (Department of Energy Engineering, University of Seville, 41004 Seville, Spain)

Abstract

The Sustainable Development Goals 2030 Agenda of United Nations raises the need of clean and affordable energy. In the pathway for more efficient and environmentally friendly solutions, new alternative power technologies and energy sources are developed. Among these, the use of syngas fuels for electricity generation can be a viable alternative in areas with high biomass or coal availability. This paper presents the energy, environmental and economic analyses of a modern combined cycle plant with the aim to evaluate the potential for a combined power plant running with alternative fuels. The goal is to identify the optimal design in terms of operating conditions and its environmental impact. Two possible configurations are investigated in the power plant presented: with the possibility to export or not export steam. An economic analysis is proposed to assess the plant feasibility. The effect of the different components in its performance is assessed. The impact of using four different syngases as fuel is evaluated and compared with the natural gas fuelled power cycle. The results show that a better efficiency is obtained for the syngas 1 (up to 54%), in respect to the others. Concerning pollutant emissions, the syngas with a GHG impact and lower carbon dioxide (CO 2 ) percentage is syngas 2.

Suggested Citation

  • Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3330-:d:347788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binamer, Anwar O., 2019. "Al-Abdaliya integrated solar combined cycle power plant: Case study of Kuwait, part I," Renewable Energy, Elsevier, vol. 131(C), pages 923-937.
    2. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    3. Neto, Abel F.G. & Marques, Francisco C. & Amador, Adriana T. & Ferreira, Amanda D.S. & Neto, Antonio M.J.C., 2019. "DFT and canonical ensemble investigations on the thermodynamic properties of Syngas and natural gas/Syngas mixtures," Renewable Energy, Elsevier, vol. 130(C), pages 495-509.
    4. Carcasci, Carlo & Cosi, Lorenzo & Ferraro, Riccardo & Pacifici, Beniamino, 2017. "Effect of a real steam turbine on thermoeconomic analysis of combined cycle power plants," Energy, Elsevier, vol. 138(C), pages 32-47.
    5. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    6. Tică, Adrian & Guéguen, Hervé & Dumur, Didier & Faille, Damien & Davelaar, Frans, 2012. "Design of a combined cycle power plant model for optimization," Applied Energy, Elsevier, vol. 98(C), pages 256-265.
    7. Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
    8. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    9. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    10. Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.
    11. Chacartegui, R. & Sánchez, D. & Muñoz de Escalona, J.M. & Muñoz, A. & Sánchez, T., 2013. "Gas and steam combined cycles for low calorific syngas fuels utilisation," Applied Energy, Elsevier, vol. 101(C), pages 81-92.
    12. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    13. Kotowicz, Janusz & Brzęczek, Mateusz, 2018. "Analysis of increasing efficiency of modern combined cycle power plant: A case study," Energy, Elsevier, vol. 153(C), pages 90-99.
    14. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2018. "Potential of biomass district heating systems in rural areas," Energy, Elsevier, vol. 156(C), pages 132-143.
    15. Mehrpooya, Mehdi, 2016. "Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes," Energy, Elsevier, vol. 111(C), pages 468-483.
    16. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    17. Kwon, Hyun Min & Kim, Tong Seop & Sohn, Jeong Lak & Kang, Do Won, 2018. "Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller," Energy, Elsevier, vol. 163(C), pages 1050-1061.
    18. Mattia Manni & Valentina Coccia & Andrea Nicolini & Guido Marseglia & Alessandro Petrozzi, 2018. "Towards Zero Energy Stadiums: The Case Study of the Dacia Arena in Udine, Italy," Energies, MDPI, vol. 11(9), pages 1-16, September.
    19. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    20. Atnaw, Samson Mekbib & Sulaiman, Shaharin Anwar & Yusup, Suzana, 2013. "Syngas production from downdraft gasification of oil palm fronds," Energy, Elsevier, vol. 61(C), pages 491-501.
    21. Kim, Young Sik & Lee, Jong Jun & Kim, Tong Seop & Sohn, Jeong L. & Joo, Yong Jin, 2010. "Performance analysis of a syngas-fed gas turbine considering the operating limitations of its components," Applied Energy, Elsevier, vol. 87(5), pages 1602-1611, May.
    22. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    23. Ersayin, Erdem & Ozgener, Leyla, 2015. "Performance analysis of combined cycle power plants: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 832-842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Yang & Xiaowen Deng & Bin Liu & Liwei Li & Yuan Li & Peng Li & Miao Tang & Lin Wu, 2022. "Combustion Performance and Emission Characteristics of Marine Engine Burning with Different Biodiesel," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Hebin Shen & Syed Ahtsham Ali & Majed Alharthi & Ali Shan Shah & Abdul Basit Khan & Qaiser Abbas & Saeed ur Rahman, 2021. "Carbon-Free Energy and Sustainable Environment: The Role of Human Capital and Technological Revolutions in Attaining SDGs," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    3. Mohamed Y. E. Selim & Mamdouh T. Ghannam & Bishoy N. Abdo & Youssef A. Attai & Mohsen S. Radwan, 2022. "Raw Jojoba Oil as a Sustainable Fuel to Diesel Engines and Comparison with Diesel Fuel," Energies, MDPI, vol. 15(16), pages 1-17, August.
    4. Mirosław Karczewski & Marcin Wieczorek, 2021. "Assessment of the Impact of Applying a Non-Factory Dual-Fuel (Diesel/Natural Gas) Installation on the Traction Properties and Emissions of Selected Exhaust Components of a Road Semi-Trailer Truck Unit," Energies, MDPI, vol. 14(23), pages 1-27, November.
    5. Okewu Emmanuel & Ananya M & Sanjay Misra & Murat Koyuncu, 2020. "A Deep Neural Network-Based Advisory Framework for Attainment of Sustainable Development Goals 1-6," Sustainability, MDPI, vol. 12(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    2. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
    3. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    4. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    5. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    6. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    7. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski & Anna Bączyk, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plans. Part A: Public Power Plants 60+," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    8. Marina Iorio & Alberto Carotenuto & Alfonso Corniello & Simona Di Fraia & Nicola Massarotti & Alessandro Mauro & Renato Somma & Laura Vanoli, 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)," Energies, MDPI, vol. 13(5), pages 1-26, March.
    9. Janusz Kotowicz & Mateusz Brzęczek & Aleksandra Walewska & Kamila Szykowska, 2022. "Methanol Production in the Brayton Cycle," Energies, MDPI, vol. 15(4), pages 1-14, February.
    10. Kwon, Hyun Min & Kim, Tong Seop & Sohn, Jeong Lak & Kang, Do Won, 2018. "Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller," Energy, Elsevier, vol. 163(C), pages 1050-1061.
    11. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    12. Kim, Young Sik & Park, Sung Ku & Lee, Jong Jun & Kang, Do Won & Kim, Tong Seop, 2013. "Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants," Energy, Elsevier, vol. 55(C), pages 977-986.
    13. Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    14. Kwon, Hyun Min & Moon, Seong Won & Kim, Tong Seop & Kang, Do Won, 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling," Energy, Elsevier, vol. 207(C).
    15. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    16. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    17. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    18. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    19. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    20. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3330-:d:347788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.