IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip1p592-600.html
   My bibliography  Save this article

High-methane gasification of fuels from waste – Experimental identification

Author

Listed:
  • Król, Danuta
  • Poskrobko, Sławomir

Abstract

The paper presents experimental research on innovative technology of RDF fuel produced from combustible waste (other than hazardous) gasification. The gasification process was performed in the compact bed, in the laboratory tubular gas generator with a power of 5 kW. In the first place RDF fuel, not enriched with methane, was gasified with addition of Bio-CONOx. Next, cogasification was performed with 10, 15 and 20% addition of methane-forming formulation. The results indicated that the addition of Bio-CONOx to the fuel resulted in an increase in the content of CH4 in the syngas (8% - without addition of Bio-CONOx to 18% CH4 with 20% addition of Bio-CONOx). At the same time there was an increase in shares of other combustible components of syngas (CO and H2). Enriching fuel with the additive Bio-CONOx increased the calorific value of the syngas LHV from 4 MJ/Nm3 (RDF) to 9 MJ/Nm3 (RDF fuel with 20% addition of Bio-CONOx). Studies have shown that the increase in efficiency of the gasification process has been obtained by setting the process conditions in a tubular reactor, i.e. temperature decomposition: 400–450 °C in the layer of fuel and 800–850 °C in the gas zone above the layer of fuel. Such temperature distribution in the layer of fuel favors exothermic process of hydrogenation of CO and CO2 to CH4 form and evaporation and decomposition of fat fraction contained in methane forming supplement. At high temperatures over a layer of fuel (in the atmosphere of unreacted oxygen), some organic vapours (greases and tars) were burnt, and some underwent cracking.

Suggested Citation

  • Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:592-600
    DOI: 10.1016/j.energy.2016.09.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216314025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siyi & Zhou, Yangmin & Yi, Chuijie, 2012. "Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor," Energy, Elsevier, vol. 44(1), pages 391-395.
    2. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    3. Prasad, Lalta & Subbarao, P.M.V. & Subrahmanyam, J.P., 2015. "Experimental investigation on gasification characteristic of high lignin biomass (Pongamia shells)," Renewable Energy, Elsevier, vol. 80(C), pages 415-423.
    4. Hamad, Mohamed A. & Radwan, Aly M. & Heggo, Dalia A. & Moustafa, Tarek, 2016. "Hydrogen rich gas production from catalytic gasification of biomass," Renewable Energy, Elsevier, vol. 85(C), pages 1290-1300.
    5. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2016. "Hydrogen from intermittent renewable energy sources as gasification medium in integrated waste gasification combined cycle power plants: A performance comparison," Energy, Elsevier, vol. 94(C), pages 457-465.
    6. Kim, Young Doo & Yang, Chang Won & Kim, Beom Jong & Kim, Kwang Su & Lee, Jeung Woo & Moon, Ji Hong & Yang, Won & Yu, Tae U & Lee, Uen Do, 2013. "Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier," Applied Energy, Elsevier, vol. 112(C), pages 414-420.
    7. Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
    8. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    9. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel, 2015. "Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices," Energy, Elsevier, vol. 93(P1), pages 864-873.
    10. Atnaw, Samson Mekbib & Sulaiman, Shaharin Anwar & Yusup, Suzana, 2013. "Syngas production from downdraft gasification of oil palm fronds," Energy, Elsevier, vol. 61(C), pages 491-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kantorek, Marcin & Jesionek, Krzysztof & Polesek-Karczewska, Sylwia & Ziółkowski, Paweł & Stajnke, Michał & Badur, Janusz, 2021. "Thermal utilization of meat-and-bone meal using the rotary kiln pyrolyzer and the fluidized bed boiler – The performance of pilot-scale installation," Renewable Energy, Elsevier, vol. 164(C), pages 1447-1456.
    2. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    3. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Watson, Jamison & Zhang, Yuanhui & Si, Buchun & Chen, Wan-Ting & de Souza, Raquel, 2018. "Gasification of biowaste: A critical review and outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 1-17.
    3. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    4. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    5. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel & Brito, Paulo, 2017. "An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier," Renewable Energy, Elsevier, vol. 109(C), pages 248-261.
    6. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    7. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    9. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    10. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    11. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    12. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    13. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    14. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    15. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    16. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    17. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    18. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    19. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    20. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.

    More about this item

    Keywords

    Gasification; Methane; Waste; RDF;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:592-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.