IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp977-986.html
   My bibliography  Save this article

Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants

Author

Listed:
  • Kim, Young Sik
  • Park, Sung Ku
  • Lee, Jong Jun
  • Kang, Do Won
  • Kim, Tong Seop

Abstract

In an IGCC (integrated gasification combined cycle) plant, the operating environment of the gas turbine (GT) deviates from the design conditions due to its integration with both the gasifier and the air separation unit (ASU). In particular, a trial to design the entire system with low GT–ASU integration would cause a decrease in the compressor surge margin and the turbine blade overheating. In this study, modification of the turbine and compressor to avoid a decrease in the surge margin and overheating was simulated, and the result was compared with the case without modification. The entire IGCC plant was modeled and the full off-design operation of the gas turbine was simulated. Under-firing and a decrease in dilution nitrogen can mitigate the two problems without component modification but inevitably cause a considerable performance penalty in the low integration degree regime. Both turbine modification (annulus area increase) and compressor modification (increase in the surge pressure ratio) enabled a continuous increase in power and efficiency with decreasing integration degree. In the very low integration degree regime, the power benefits of the two modifications were similar and considerable. A sensible power boost can be achieved if the turbine coolant modulation can be adopted instead of under-firing in modification strategies.

Suggested Citation

  • Kim, Young Sik & Park, Sung Ku & Lee, Jong Jun & Kang, Do Won & Kim, Tong Seop, 2013. "Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants," Energy, Elsevier, vol. 55(C), pages 977-986.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:977-986
    DOI: 10.1016/j.energy.2013.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kunze, Christian & Spliethoff, Hartmut, 2012. "Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants," Applied Energy, Elsevier, vol. 94(C), pages 109-116.
    2. Skorek-Osikowska, Anna & Janusz-Szymańska, Katarzyna & Kotowicz, Janusz, 2012. "Modeling and analysis of selected carbon dioxide capture methods in IGCC systems," Energy, Elsevier, vol. 45(1), pages 92-100.
    3. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    4. Chacartegui, R. & Sánchez, D. & Muñoz de Escalona, J.M. & Muñoz, A. & Sánchez, T., 2013. "Gas and steam combined cycles for low calorific syngas fuels utilisation," Applied Energy, Elsevier, vol. 101(C), pages 81-92.
    5. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    6. Descamps, C. & Bouallou, C. & Kanniche, M., 2008. "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal," Energy, Elsevier, vol. 33(6), pages 874-881.
    7. Erlach, B. & Schmidt, M. & Tsatsaronis, G., 2011. "Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion," Energy, Elsevier, vol. 36(6), pages 3804-3815.
    8. Park, Sung Ku & Ahn, Ji-Ho & Kim, Tong Seop, 2011. "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, Elsevier, vol. 88(9), pages 2976-2987.
    9. Lee, Jong Jun & Kim, Young Sik & Cha, Kyu Sang & Kim, Tong Seop & Sohn, Jeong L. & Joo, Yong Jin, 2009. "Influence of system integration options on the performance of an integrated gasification combined cycle power plant," Applied Energy, Elsevier, vol. 86(9), pages 1788-1796, September.
    10. Liszka, Marcin & Tuka, Jakub, 2012. "Parametric study of GT and ASU integration in case of IGCC with CO2 removal," Energy, Elsevier, vol. 45(1), pages 151-159.
    11. Kim, Young Sik & Lee, Jong Jun & Kim, Tong Seop & Sohn, Jeong L. & Joo, Yong Jin, 2010. "Performance analysis of a syngas-fed gas turbine considering the operating limitations of its components," Applied Energy, Elsevier, vol. 87(5), pages 1602-1611, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    2. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    3. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    2. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    3. Lee, Adrian J. & Diwekar, Urmila M., 2012. "Optimal sensor placement in integrated gasification combined cycle power systems," Applied Energy, Elsevier, vol. 99(C), pages 255-264.
    4. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    5. Urech, Jeremy & Tock, Laurence & Harkin, Trent & Hoadley, Andrew & Maréchal, François, 2014. "An assessment of different solvent-based capture technologies within an IGCC–CCS power plant," Energy, Elsevier, vol. 64(C), pages 268-276.
    6. Oh, Hyun-Taek & Lee, Woo-Sung & Ju, Youngsan & Lee, Chang-Ha, 2019. "Performance evaluation and carbon assessment of IGCC power plant with coal quality," Energy, Elsevier, vol. 188(C).
    7. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    8. Park, Sung Ku & Ahn, Ji-Ho & Kim, Tong Seop, 2011. "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, Elsevier, vol. 88(9), pages 2976-2987.
    9. Esmaili, Ehsan & Mostafavi, Ehsan & Mahinpey, Nader, 2016. "Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture," Applied Energy, Elsevier, vol. 169(C), pages 341-352.
    10. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    11. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    12. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    13. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    14. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
    15. Ziębik, Andrzej & Malik, Tomasz & Liszka, Marcin, 2015. "Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification," Energy, Elsevier, vol. 92(P2), pages 179-188.
    16. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    17. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    18. Xiping Wang & Hongdou Zhang, 2018. "Optimal design of carbon tax to stimulate CCS investment in China's coal‐fired power plants: A real options analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 863-875, October.
    19. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    20. Mansouri Majoumerd, Mohammad & De, Sudipta & Assadi, Mohsen & Breuhaus, Peter, 2012. "An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration," Applied Energy, Elsevier, vol. 99(C), pages 280-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:977-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.