IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2488-d335663.html
   My bibliography  Save this article

What Factors Affect the Level of Green Urbanization in the Yellow River Basin in the Context of New-Type Urbanization?

Author

Listed:
  • Luping Shi

    (Business School, Hohai University, Changzhou 213022, China)

  • Zhongyao Cai

    (Business School, Hohai University, Changzhou 213022, China)

  • Xuhui Ding

    (School of Finance and Economics, Jiangsu University, Zhenjiang 212013, China)

  • Rong Di

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Qianqian Xiao

    (Business School, Hohai University, Changzhou 213022, China)

Abstract

Promoting new-type urbanization with the concept of green development has become an inevitable requirement for high-quality development in the Yellow River Basin. Grasping the development trend and influencing factors of green urbanization level in the Yellow River Basin is of great significance for implementing the international conventions on environmental protection and participating in global environmental governance. This paper selects the green urbanization level panel data of nine provinces in the Yellow River Basin from 2006 to 2018. Then, principal component analysis and factor analysis are applied to measure and evaluate the green urbanization level of each province. Furthermore, this paper constructs a dynamic panel estimation model and uses differential generalized method of moments (DIF-GMM) model and system generalized method of moments (SYS-GMM) model to explore the influencing factors. The results show that the overall level of green urbanization in the Yellow River Basin has steadily and rapidly increased, and there are significant spatial differences. The green urbanization level of eastern provinces is significantly higher than that of central and western provinces. In addition, the overall level of green urbanization shows a convergence trend. From the perspective of influencing factors, the factors that have significant positive effects on the level of green urbanization include economic development level, technological innovation level, and urban size. Industrial structure, foreign direct investment (FDI), and education level counteract the level of green urbanization. However, environmental regulation strength and opening degree fail to pass the significance test. Therefore, it is necessary to promote and upgrade industrial transformation, improve the quality of opening up, and strengthen cooperation in technological innovation and environmental governance. There are requirements that the government control the urban size and population scientifically and implement the environmental access system strictly in order to improve the level of green urbanization in the Yellow River Basin. It is more possible to achieve harmonious economic and ecological environment development.

Suggested Citation

  • Luping Shi & Zhongyao Cai & Xuhui Ding & Rong Di & Qianqian Xiao, 2020. "What Factors Affect the Level of Green Urbanization in the Yellow River Basin in the Context of New-Type Urbanization?," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2488-:d:335663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suyi Kim, 2020. "The Effects of Foreign Direct Investment, Economic Growth, Industrial Structure, Renewable and Nuclear Energy, and Urbanization on Korean Greenhouse Gas Emissions," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    2. Min Song & Can Hu, 2018. "A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    3. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    4. Xuhui Ding & Zhu Fu & Hongwen Jia, 2019. "Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    5. Chengliang Liu & Tao Wang & Qingbin Guo, 2018. "Factors Aggregating Ability and the Regional Differences among China’s Urban Agglomerations," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    6. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    7. Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikienė & Alireza Yousefpour & Wadim Strielkowski & Abbas Mardani, 2019. "Aligning the Criteria of Green Economy (GE) and Sustainable Development Goals (SDGs) to Implement Sustainable Development," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    8. Marianne Fay & Jin-zhao Wang & Gailius Draugelis & Uwe Deichmann, 2014. "Role of Green Governance in Achieving Sustainable Urbanization in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 22(5), pages 19-36, September.
    9. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    10. Qinglong Shao & Jiaying Li & Lingling Zhao, 2019. "A Four-Dimensional Evaluation of the Urban Comprehensive Carrying Capacity of the Yangtze River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    11. Mariano Pereira & Diana Suárez, 2018. "Matthew effect, capabilities and innovation policy: the Argentinean case," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 27(1), pages 62-79, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengyun Jiang & Yun Feng & Jinping Song & Chengzhen Song & Xiaodi Zhao & Chi Zhang, 2023. "Study on the Spatial–Temporal Pattern Evolution and Carbon Emission Reduction Effect of Industry–City Integration in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    2. Zhibao Wang & Guangzhi Qi, 2022. "Demographic Transition in Natural Watersheds: Evidence from Population Aging in the Yellow River Basin Based on Various Types of Migration," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    3. Mengtian Zhang & Huiling Wang, 2023. "Evolution of Industrial Ecology and Analysis of Influencing Factors: The Yellow River Basin in China," Land, MDPI, vol. 12(7), pages 1-21, June.
    4. Jingxu Wang & Shike Qiu & Jun Du & Shengwang Meng & Chao Wang & Fei Teng & Yangyang Liu, 2022. "Spatial and Temporal Changes of Urban Built-Up Area in the Yellow River Basin from Nighttime Light Data," Land, MDPI, vol. 11(7), pages 1-14, July.
    5. Guizhang Zhao & Lingying Kong & Yunliang Li & Yuanzhi Xu & Zhiping Li, 2022. "Investigating Historical Baseflow Characteristics and Variations in the Upper Yellow River Basin, China," IJERPH, MDPI, vol. 19(15), pages 1-13, July.
    6. Xiaofang Sun & Guicai Li & Junbang Wang & Meng Wang, 2021. "Quantifying the Land Use and Land Cover Changes in the Yellow River Basin while Accounting for Data Errors Based on GlobeLand30 Maps," Land, MDPI, vol. 10(1), pages 1-18, January.
    7. Aijun Guo & Yongnian Zhang & Fanglei Zhong & Daiwei Jiang, 2020. "Spatiotemporal Patterns of Ecosystem Service Value Changes and Their Coordination with Economic Development: A Case Study of the Yellow River Basin, China," IJERPH, MDPI, vol. 17(22), pages 1-17, November.
    8. Yu Zhang & Wenliang Geng & Pengyan Zhang & Erling Li & Tianqi Rong & Ying Liu & Jingwen Shao & Hao Chang, 2020. "Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    9. Decai Tang & Hui Zhong & Jingyi Zhang & Yongguang Dai & Valentina Boamah, 2022. "The Effect of Green Finance on the Ecological and Environmental Quality of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    10. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    11. Yang, Qi-Cheng & Zheng, Mingbo & Chang, Chun-Ping, 2022. "Energy policy and green innovation: A quantile investigation into renewable energy," Renewable Energy, Elsevier, vol. 189(C), pages 1166-1175.
    12. Meirui Li & Baolei Zhang & Xiaobo Zhang & Shumin Zhang & Le Yin, 2023. "Exploring Spatio-Temporal Variations of Ecological Risk in the Yellow River Ecological Economic Belt Based on an Improved Landscape Index Method," IJERPH, MDPI, vol. 20(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiling Zhang & Yusheng Kong & Xuhui Ding, 2020. "How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action?," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    2. Jiang Du & Mengqin Zhao & Ming Zeng & Kezhen Han & Huaping Sun, 2020. "Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Hui Zou & Xiaohua Ma, 2021. "Identifying resource and environmental carrying capacity in the Yangtze River Economic Belt, China: the perspectives of spatial differences and sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14775-14798, October.
    4. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    5. Wirat Krasachat & Suthathip Yaisawarng, 2021. "Directional Distance Function Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    6. Francesc Amat & Pablo Beramendi & Miriam Hortas-Rico & Vicente Rios, 2020. "How inequality shapes political participation: The role of spatial patterns of political competition," Working Papers. Collection B: Regional and sectoral economics 2002, Universidade de Vigo, GEN - Governance and Economics research Network.
    7. Ren Wang & Yuxiang Bian & Han Gao & Jie Hou, 2023. "Optimal Environmental Policy for Heterogeneous Governments in China," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    8. Wenyao Guo & Xianzhong Mu, 2022. "Identification of Cities in Underdeveloped Resource-Rich Areas and Its Sustainable Development: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    9. Montmartin, Benjamin & Herrera, Marcos & Massard, Nadine, 2018. "The impact of the French policy mix on business R&D: How geography matters," Research Policy, Elsevier, vol. 47(10), pages 2010-2027.
    10. Atems, Bebonchu, 2015. "Another look at tax policy and state economic growth: The long-run and short-run of it," Economics Letters, Elsevier, vol. 127(C), pages 64-67.
    11. Manea, Roxana Elena & Piraino, Patrizio & Viarengo, Martina, 2023. "Crime, inequality and subsidized housing: Evidence from South Africa," World Development, Elsevier, vol. 168(C).
    12. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    13. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    14. Armenia Androniceanu & Irina Georgescu & Ionuț Nica & Nora Chiriță, 2023. "A Comprehensive Analysis of Renewable Energy Based on Integrating Economic Cybernetics and the Autoregressive Distributed Lag Model—The Case of Romania," Energies, MDPI, vol. 16(16), pages 1-28, August.
    15. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    16. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    17. Christopoulos, Konstantinos & Eleftheriou, Konstantinos, 2020. "The fiscal impact of health care expenditure: Evidence from the OECD countries," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 195-202.
    18. Jeong, Hanbat & Lee, Lung-fei, 2020. "Spatial dynamic models with intertemporal optimization: Specification and estimation," Journal of Econometrics, Elsevier, vol. 218(1), pages 82-104.
    19. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 684-693, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2488-:d:335663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.