IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10580-d464012.html
   My bibliography  Save this article

Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches

Author

Listed:
  • Manuel Mocholi-Arce

    (Department of Mathematics for Economics and Business, University of Valencia, 46022 Valencia, Spain)

  • Trinidad Gómez

    (Department of Applied Economics (Mathematics), Campus El Ejido, University of Málaga, 29071 Málaga, Spain)

  • Maria Molinos-Senante

    (Department of Hydraulic and Environmental Engineering, Pontifical Catholic University of Chile, Santiago 4860, Chile
    Center for Sustainable Urban Development ANID/FONDAP/15110020, Santiago 4860, Chile)

  • Ramon Sala-Garrido

    (Department of Mathematics for Economics and Business, University of Valencia, 46022 Valencia, Spain)

  • Rafael Caballero

    (Department of Applied Economics (Mathematics), Campus El Ejido, University of Málaga, 29071 Málaga, Spain)

Abstract

The assessment of wastewater treatment plant (WWTP) performance has gained the interest of water utilities and water regulators. Eco-efficiency has been identified as a powerful indicator, as it integrates economic and environmental variables into a single index. Most previous studies have employed traditional data envelopment analysis (DEA) for the evaluation of WWTP eco-efficiency. However, DEA allows the selection of input and output weights for individual WWTPs for the calculation of eco-efficiency scores. To overcome this limitation, we employed the double-frontier and common set of weights methods to evaluate the eco-efficiency of a sample of 30 WWTPs in Spain. The WWTPs were ranked based on eco-efficiency scores derived under several scenarios including best- and worst-case scenarios; this approach to performance assessment is reliable and robust. Twenty-six of the 30 WWTPs were not classified as eco-efficient, even under the most favorable scenario, indicating that these facilities have substantial room for the reduction of costs and greenhouse gas emissions. The ranking of WWTPs varied according to the scenario used for evaluation, which has notable consequences when eco-efficiency scores are used for regulatory purposes. The findings of this study are relevant for water regulators and water utilities, as they demonstrate the importance of weight allocation for eco-efficiency score estimation.

Suggested Citation

  • Manuel Mocholi-Arce & Trinidad Gómez & Maria Molinos-Senante & Ramon Sala-Garrido & Rafael Caballero, 2020. "Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10580-:d:464012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    2. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    3. Y M Wang & K S Chin & J B Yang, 2007. "Measuring the performances of decision-making units using geometric average efficiency," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 929-937, July.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Wang, Ying-Ming & Lan, Yi-Xin, 2013. "Estimating most productive scale size with double frontiers data envelopment analysis," Economic Modelling, Elsevier, vol. 33(C), pages 182-186.
    6. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    7. A. Guerrini & G. Romano & L. Carosi & F. Mancuso, 2017. "Cost Savings in Wastewater Treatment Processes: the Role of Environmental and Operational Drivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2465-2478, June.
    8. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    9. Wu, Jie & Chu, Junfei & Sun, Jiasen & Zhu, Qingyuan, 2016. "DEA cross-efficiency evaluation based on Pareto improvement," European Journal of Operational Research, Elsevier, vol. 248(2), pages 571-579.
    10. M C S Portela & A S Camanho & D Borges, 2012. "Performance assessment of secondary schools: the snapshot of a country taken by DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1098-1115, August.
    11. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, September.
    12. Lei Chen & Fei-Mei Wu & Feng Feng & Fujun Lai & Ying-Ming Wang, 2018. "A Common Set of Weights for Ranking Decision-Making Units with Undesirable Outputs: A Double Frontiers Data Envelopment Analysis Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    2. Sigrid Kusch-Brandt & Mohammad A. T. Alsheyab, 2021. "Wastewater Refinery: Producing Multiple Valuable Outputs from Wastewater," J, MDPI, vol. 4(1), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    2. Kiani Mavi, Reza & Kiani Mavi, Neda & Farzipoor Saen, Reza & Goh, Mark, 2022. "Common weights analysis of renewable energy efficiency of OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    3. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    4. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    5. Zhengxiao Yan & Wei Zhou & Yuyi Wang & Xi Chen, 2022. "Comprehensive Analysis of Grain Production Based on Three-Stage Super-SBM DEA and Machine Learning in Hexi Corridor, China," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    6. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    7. Balk, Bert M. & (René) De Koster, M.B.M. & Kaps, Christian & Zofío, José L., 2021. "An evaluation of cross-efficiency methods: With an application to warehouse performance," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    8. Victoria Vicario-Modroño & Rosa Gallardo-Cobos & Pedro Sánchez-Zamora, 2023. "Sustainability evaluation of olive oil mills in Andalusia (Spain): a study based on composite indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6363-6392, July.
    9. Lei Chen & Fei-Mei Wu & Feng Feng & Fujun Lai & Ying-Ming Wang, 2018. "A Common Set of Weights for Ranking Decision-Making Units with Undesirable Outputs: A Double Frontiers Data Envelopment Analysis Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-25, December.
    10. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    11. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    12. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    13. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    14. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    15. Eshagh Esfandiar & Robabeh Eslami & Mohammad Khoveyni & Alireza Gilani, 2023. "Identifying the closest most productive scale size unit in data envelopment analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 623-660, June.
    16. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    17. Jie Wu & Qingyuan Zhu & Pengzhen Yin & Malin Song, 2017. "Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices," Operational Research, Springer, vol. 17(3), pages 715-735, October.
    18. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.
    19. Mirhedayatian, Seyed Mostafa & Azadi, Majid & Farzipoor Saen, Reza, 2014. "A novel network data envelopment analysis model for evaluating green supply chain management," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 544-554.
    20. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10580-:d:464012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.