IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10251-d458834.html
   My bibliography  Save this article

A Prediction Method of GHG Emissions for Urban Road Transportation Planning and Its Applications

Author

Listed:
  • Jing Gan

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Linheng Li

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Qiaojun Xiang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Bin Ran

    (Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA)

Abstract

The increasing vehicle usage has brought about a sharp increase in greenhouse gas (GHG) emissions of vehicles, which brings severe challenges to the sustainable development of road transportation in Chinese counties. Low-carbon transportation planning is an essential strategy for carbon control from the source of carbon emissions and is crucial to the full transition to a low-carbon future. For transportation planning designers, a quick and accurate estimation of carbon emissions under different transportation planning schemes is a prerequisite to determine the optimal low-carbon transportation development plan. To address this issue, a novel prediction method of hourly GHG emissions over the urban roads network was constructed in this paper. A case study was conducted in Changxing county, and the results indicate the effectiveness of our proposed method. Furthermore, we applied the same approach to 30 other counties in China to analyze the influencing factors of emissions from urban road networks in Chinese counties. The analysis results indicate that the urban road mileage and arterial road ratio are the two most important factors affecting road network GHG emissions in road traffic planning process. Moreover, the method was employed to derive peak hour emission coefficients that can be used to quickly estimate daily or annual GHG emissions. The peak hour emission of CO 2 , CH 4 , and N 2 O accounts for approximately 9–10%, 8.5–10.5%, 5.5–7.5% of daily emissions, respectively. It is expected that the findings from this study would be helpful for establishing effective carbon control strategies in the transportation planning stage to reduce road traffic GHG emissions in counties.

Suggested Citation

  • Jing Gan & Linheng Li & Qiaojun Xiang & Bin Ran, 2020. "A Prediction Method of GHG Emissions for Urban Road Transportation Planning and Its Applications," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10251-:d:458834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
    2. José María Martín Martín & Jose Manuel Guaita Martínez & Valentín Molina Moreno & Antonio Sartal Rodríguez, 2019. "An Analysis of the Tourist Mobility in the Island of Lanzarote: Car Rental Versus More Sustainable Transportation Alternatives," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    3. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    4. Agnieszka Janik & Adam Ryszko & Marek Szafraniec, 2020. "Greenhouse Gases and Circular Economy Issues in Sustainability Reports from the Energy Sector in the European Union," Energies, MDPI, vol. 13(22), pages 1-36, November.
    5. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    6. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    7. Akrum Helfaya & Mark Whittington, 2019. "Does designing environmental sustainability disclosure quality measures make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 28(4), pages 525-541, May.
    8. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengying Yan & Ningyu Huang & Yehui Zhang, 2022. "How Can the Layout of Public Service Facilities Be Optimized to Reduce Travel-Related Carbon Emissions? Evidence from Changxing County, China," Land, MDPI, vol. 11(8), pages 1-24, July.
    2. Hanghun Jo & Heungsoon Kim, 2021. "Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    3. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2023. "Effects of the SARS-CoV-2 Pandemic on CO 2 Emissions in the Port Areas of the Strait of Messina," Sustainability, MDPI, vol. 15(12), pages 1-30, June.
    4. Weijia Li & Yuejiao Wang, 2023. "Optimization of Urban Road Green Belts under the Background of Carbon Peak Policy," Sustainability, MDPI, vol. 15(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).
    2. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    4. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    5. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    6. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    7. Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
    8. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    9. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    10. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    11. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    12. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    13. Hugo Padrón-Ávila & Raúl Hernández-Martín, 2019. "Preventing Overtourism by Identifying the Determinants of Tourists’ Choice of Attractions," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    14. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    15. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    16. Philip R. Walsh & Rachel Dodds & Julianna Priskin & Jonathon Day & Oxana Belozerova, 2021. "The Corporate Responsibility Paradox: A Multi-National Investigation of Business Traveller Attitudes and Their Sustainable Travel Behaviour," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    17. Fulton, Lew & Schiffman, Gil & Tal, Gil, 2016. "Equity Impacts of Fee Systems to Support Zero Emission Vehicle Sales in California," Institute of Transportation Studies, Working Paper Series qt28s2n32v, Institute of Transportation Studies, UC Davis.
    18. Selima Sultana & Hyojin Kim & Nastaran Pourebrahim & Firoozeh Karimi, 2018. "Geographical Assessment of Low-Carbon Transportation Modes: A Case Study from a Commuter University," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    19. Tong Zhang, Paul J. Burke, and Qi Wang, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Departmental Working Papers 2024-1, The Australian National University, Arndt-Corden Department of Economics.
    20. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10251-:d:458834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.