IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8225-d424262.html
   My bibliography  Save this article

Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany

Author

Listed:
  • Tobias Junne

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany)

  • Sonja Simon

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany)

  • Jens Buchgeister

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany
    Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany)

  • Maximilian Saiger

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany)

  • Manuel Baumann

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany)

  • Martina Haase

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany)

  • Christina Wulf

    (Institute of Energy and Climate Research, Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, 52428 Jülich, Germany)

  • Tobias Naegler

    (Department of Energy Systems Analysis, Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart, Germany)

Abstract

In order to analyse long-term transformation pathways, energy system models generally focus on economical and technical characteristics. However, these models usually do not consider sustainability aspects such as environmental impacts. In contrast, life cycle assessment enables an extensive estimate of those impacts. Due to these complementary characteristics, the combination of energy system models and life cycle assessment thus allows comprehensive environmental sustainability assessments of technically and economically feasible energy system transformation pathways. We introduce FRITS, a FRamework for the assessment of environmental Impacts of Transformation Scenarios. FRITS links bottom-up energy system models with life cycle impact assessment indicators and quantifies the environmental impacts of transformation strategies of the entire energy system (power, heat, transport) over the transition period. We apply the framework to conduct an environmental assessment of multi-sectoral energy scenarios for Germany. Here, a ‘Target’ scenario reaching 80% reduction of energy-related direct CO 2 emissions is compared with a ‘Reference’ scenario describing a less ambitious transformation pathway. The results show that compared to 2015 and the ‘Reference’ scenario, the ‘Target’ scenario performs better for most life cycle impact assessment indicators. However, the impacts of resource consumption and land use increase for the ‘Target’ scenario. These impacts are mainly caused by road passenger transport and biomass conversion.

Suggested Citation

  • Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8225-:d:424262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    2. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    3. Menten, Fabio & Tchung-Ming, Stéphane & Lorne, Daphné & Bouvart, Frédérique, 2015. "Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 942-960.
    4. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    5. Portugal Pereira, Joana & Troncoso Parady, Giancarlos & Castro Dominguez, Bernardo, 2014. "Japan's energy conundrum: Post-Fukushima scenarios from a life cycle perspective," Energy Policy, Elsevier, vol. 67(C), pages 104-115.
    6. García-Gusano, Diego & Iribarren, Diego, 2018. "Prospective energy security scenarios in Spain: The future role of renewable power generation technologies and climate change implications," Renewable Energy, Elsevier, vol. 126(C), pages 202-209.
    7. Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
    8. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    9. Christoph Schlenzig, 1999. "Energy planning and environmental management with the information and decision support system MESAP," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 12(1/2/3/4/5), pages 81-91.
    10. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    11. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    12. Stefan Pauliuk & Guillaume Majeau-Bettez & Christopher L. Mutel & Bernhard Steubing & Konstantin Stadler, 2015. "Lifting Industrial Ecology Modeling to a New Level of Quality and Transparency: A Call for More Transparent Publications and a Collaborative Open Source Software Framework," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 937-949, December.
    13. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    14. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    15. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    16. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    17. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L. Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna M, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    2. Martin, Nick & Talens-Peiró, Laura & Villalba-Méndez, Gara & Nebot-Medina, Rafael & Madrid-López, Cristina, 2023. "An energy future beyond climate neutrality: Comprehensive evaluations of transition pathways," Applied Energy, Elsevier, vol. 331(C).
    3. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    4. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    5. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    7. Jürgen Kopfmüller & Wolfgang Weimer-Jehle & Tobias Naegler & Jens Buchgeister & Klaus-Rainer Bräutigam & Volker Stelzer, 2021. "Integrative Scenario Assessment as a Tool to Support Decisions in Energy Transition," Energies, MDPI, vol. 14(6), pages 1-34, March.
    8. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Tobias Junne & Karl-Kiên Cao & Kim Kira Miskiw & Heidi Hottenroth & Tobias Naegler, 2021. "Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization," Energies, MDPI, vol. 14(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    2. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    3. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    5. Tobias Junne & Karl-Kiên Cao & Kim Kira Miskiw & Heidi Hottenroth & Tobias Naegler, 2021. "Considering Life Cycle Greenhouse Gas Emissions in Power System Expansion Planning for Europe and North Africa Using Multi-Objective Optimization," Energies, MDPI, vol. 14(5), pages 1-26, February.
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    9. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    10. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    11. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    12. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    14. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    15. Vögele, Stefan & Teja Josyabhatla, Vishnu & Ball, Christopher & Rhoden, Imke & Grajewski, Matthias & Rübbelke, Dirk & Kuckshinrichs, Wilhelm, 2023. "Robust assessment of energy scenarios from stakeholders' perspectives," Energy, Elsevier, vol. 282(C).
    16. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    17. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    18. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    19. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    20. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8225-:d:424262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.