IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7279-d409095.html
   My bibliography  Save this article

Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China

Author

Listed:
  • Zhaodan Wu

    (Business School, Hohai University, Nanjing 211100, China
    Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization, Nanjing 211100, China
    One Belt & One Road African Research Center, Hohai University, Changzhou 213022, China)

  • Quanliang Ye

    (Faculty of Engineering Technology, University of Twente, 7500 AE Enschede, The Netherlands)

  • Ze Tian

    (Business School, Hohai University, Nanjing 211100, China
    One Belt & One Road African Research Center, Hohai University, Changzhou 213022, China)

Abstract

With the outstanding investment in infrastructure during the past decades, the evaluation of the infrastructure-environment nexus is highly required to achieve the sustainable development of economy, resources and environment, as well as human being. This study analyzes the supply-chain-wide blue water withdrawal occurred in China for global infrastructure development, and one step further, the potential effects of policy and human intervention on future infrastructure-related environmental performances. Our results showed that the blue water withdrawal in China was main for the domestic infrastructure construction because of its rapid-growing investment, coupled with that in the United States, Japan, and India. Energy-related products (e.g., “Electricity by coal”) and primary materials (e.g., “Basic iron and steel”), highly required for the construction of infrastructure, have played relatively great roles in China’s blue water withdrawal. For the future sustainable development of infrastructure, we also addressed that efficiency improvement and nonconventional water resource utilization could cover half of the blue water gap between the current development trend and the sustainable one. In light of the synergies among infrastructure development, environmental sustainability and socioeconomic intervention, it is vital to uphold economic and environmental efficiency in the decision-making of infrastructure development.

Suggested Citation

  • Zhaodan Wu & Quanliang Ye & Ze Tian, 2020. "Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7279-:d:409095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Bringezu & Janez Potočnik & Heinz Schandl & Yonglong Lu & Anu Ramaswami & Mark Swilling & Sangwon Suh, 2016. "Multi-Scale Governance of Sustainable Natural Resource Use—Challenges and Opportunities for Monitoring and Institutional Development at the National and Global Level," Sustainability, MDPI, vol. 8(8), pages 1-25, August.
    2. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    3. Xiao, Yanyan & Norris, Catherine Benoît & Lenzen, Manfred & Norris, Gregory & Murray, Joy, 2017. "How Social Footprints of Nations Can Assist in Achieving the Sustainable Development Goals," Ecological Economics, Elsevier, vol. 135(C), pages 55-65.
    4. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    5. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    6. Zhan-Ming Chen & Stephanie Ohshita & Manfred Lenzen & Thomas Wiedmann & Magnus Jiborn & Bin Chen & Leo Lester & Dabo Guan & Jing Meng & Shiyun Xu & Guoqian Chen & Xinye Zheng & JinJun Xue & Ahmed Alsa, 2018. "Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. B.C. O'Neill & T Carter & Kl Ebi & J. Edmonds & Stéphane Hallegatte & E. Kemp-Benedict & E. Kriegler & L. Mearns & R. Moss & K. Riahi & B. van Ruijven & D. van Vuuren, 2012. "Meeting Report of the Workshop on The Nature and Use of New Socioeconomic Pathways for Climate Change Research," Working Papers hal-00801931, HAL.
    8. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    9. Fernando Ascensão & Lenore Fahrig & Anthony P. Clevenger & Richard T. Corlett & Jochen A. G. Jaeger & William F. Laurance & Henrique M. Pereira, 2018. "Environmental challenges for the Belt and Road Initiative," Nature Sustainability, Nature, vol. 1(5), pages 206-209, May.
    10. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Tzu-Yu Lin & Sheng-Hsiung Chiu, 2018. "Sustainable Performance of Low-Carbon Energy Infrastructure Investment on Regional Development: Evidence from China," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    12. Straub, Stephane & Vellutini, Charles & Warlters, Michael, 2008. "Infrastructure and economic growth in East Asia," Policy Research Working Paper Series 4589, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    2. Vincent Egenolf & Stefan Bringezu, 2019. "Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    3. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    4. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    5. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    6. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
    7. Arne J. Nagengast & Robert Stehrer, 2016. "The Great Collapse in Value Added Trade," Review of International Economics, Wiley Blackwell, vol. 24(2), pages 392-421, May.
    8. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    9. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    10. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    11. Mazzanti, Massimiliano & Montini, Anna, 2010. "Embedding the drivers of emission efficiency at regional level -- Analyses of NAMEA data," Ecological Economics, Elsevier, vol. 69(12), pages 2457-2467, October.
    12. Duarte, Rosa & Serrano, Ana, 2021. "Environmental analysis of structural and technological change in a context of trade expansion: Lessons from the EU enlargement," Energy Policy, Elsevier, vol. 150(C).
    13. Quanliang Ye & Maarten S. Krol & Yuli Shan & Joep F. Schyns & Markus Berger & Klaus Hubacek, 2023. "Allocating capital-associated CO2 emissions along the full lifespan of capital investments helps diffuse emission responsibility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Saari, M. Yusof & Dietzenbacher, Erik & Los, Bart, 2015. "Sources of Income Growth and Inequality Across Ethnic Groups in Malaysia, 1970–2000," World Development, Elsevier, vol. 76(C), pages 311-328.
    15. Coenen, Johanna & Newig, Jens & Meyfroidt, Patrick, 2022. "Environmental governance of a Belt and Road project in Montenegro – National agency and external influences," Land Use Policy, Elsevier, vol. 119(C).
    16. Nechifor, Victor & Basheer, Mohammed & Calzadilla, Alvaro & Obuobie, Emmanuel & Harou, Julien J., 2022. "Financing national scale energy projects in developing countries – An economy-wide evaluation of Ghana's Bui Dam," Energy Economics, Elsevier, vol. 111(C).
    17. Philipp Schepelmann & An Vercalsteren & José Acosta-Fernandez & Mathieu Saurat & Katrien Boonen & Maarten Christis & Giovanni Marin & Roberto Zoboli & Cathy Maguire, 2020. "Driving Forces of Changing Environmental Pressures from Consumption in the European Food System," Sustainability, MDPI, vol. 12(19), pages 1-30, October.
    18. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    19. Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
    20. Quanrun Chen & Erik Dietzenbacher & Bart Los, 2015. "Structural decomposition analyses: the differences between applying the semi-closed and the open input–output model," Environment and Planning A, , vol. 47(8), pages 1713-1735, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7279-:d:409095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.