IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7026-d405528.html
   My bibliography  Save this article

Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China

Author

Listed:
  • Lijuan Yang

    (School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
    School of Management, Guilin University of Aerospace Technology, Guilin 541004, China)

  • Eldon Y. Li

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

  • Yu Zhang

    (School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
    Engineering Research Center of Port Logistics Technology and Equipment of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China)

Abstract

Congestion before the Three Gorges Dam has been an obstacle to the sustainable development of the Yangtze River. Water–land transshipment can be a better way to alleviate congestion. Consequently, the government started to offer subsidies to evacuate ships’ traffic flow through transshipment despite that it increases environmental pollution. In this paper, we analyze the effects of subsidies on carriers’ adoption behavioral strategies, congestion and transshipment on the environment, and subsidies on pricing considering environmental emissions. Two different models are constructed, and a simulation analysis is carried out with different scenarios by varying the values of different parameters. The results show that subsidies can affect carriers’ behavioral strategies. Both lockage and transshipment modes can increase environmental emissions. Pricing under the subsidy scenario can be more competitive with profit maximization. The results offer important implications to policymakers, carriers, shippers.

Suggested Citation

  • Lijuan Yang & Eldon Y. Li & Yu Zhang, 2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7026-:d:405528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    2. Álvarez-SanJaime, Óscar & Cantos-Sánchez, Pedro & Moner-Colonques, Rafael & Sempere-Monerris, José J., 2013. "Competition and horizontal integration in maritime freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 67-81.
    3. Dubovik, Andrei & Janssen, Maarten C.W., 2012. "Oligopolistic competition in price and quality," Games and Economic Behavior, Elsevier, vol. 75(1), pages 120-138.
    4. Jo Reynaerts, 2012. "Estimating Lock Congestion," Working Papers of Department of Economics, Leuven 482526, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    5. Juhong Chen & Di Wu & Peng Li, 2018. "Research on the Pricing Model of the Dual-Channel Reverse Supply Chain Considering Logistics Costs and Consumers’ Awareness of Sustainability Based on Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    6. William W. Wilson & Bruce L. Dahl & Richard D. Taylor, 2011. "Impacts of Lock Capacity Expansion on Delay Costs for Grain Shipped on the Mississippi River," Journal of Transport Economics and Policy, University of Bath, vol. 45(1), pages 129-154, January.
    7. Nauss, Robert M., 2008. "Optimal sequencing in the presence of setup times for tow/barge traffic through a river lock," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1268-1281, June.
    8. Douglas Smith, L. & Nauss, Robert M. & Mattfeld, Dirk Christian & Li, Jian & Ehmke, Jan F. & Reindl, M., 2011. "Scheduling operations at system choke points with sequence-dependent delays and processing times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 669-680, September.
    9. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    10. Yu Yvette Zhang & Meng-Shiuh Chang & Stephen W Fuller, 2015. "Statistical analysis of vessel waiting time and lockage time on the Upper Mississippi River," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 17(4), pages 416-439, December.
    11. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    12. Chaoda Xie & Xifu Wang & Daisuke Fukuda, 2020. "On the Pricing of Urban Rail Transit with Track Sharing Freight Service," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    13. Verstichel, J. & De Causmaecker, P. & Spieksma, F.C.R. & Vanden Berghe, G., 2014. "Exact and heuristic methods for placing ships in locks," European Journal of Operational Research, Elsevier, vol. 235(2), pages 387-398.
    14. Wang, Xiaoping & Zhao, Yunliang & Sun, Peng & Wang, Xiaobin, 2013. "An analysis on convergence of data-driven approach to ship lock scheduling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 88(C), pages 31-38.
    15. Qu, Chenrui & Wang, Grace W.Y. & Zeng, Qingcheng, 2017. "Modelling port subsidy policies considering pricing decisions of feeder carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 115-133.
    16. Christine Tawfik & Sabine Limbourg, 2018. "Pricing Problems in Intermodal Freight Transport: Research Overview and Prospects," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    17. Ji, Bin & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Fernando, Tyrone & Iu, Herbert H.C., 2019. "Exact and heuristic methods for optimizing lock-quay system in inland waterway," European Journal of Operational Research, Elsevier, vol. 277(2), pages 740-755.
    18. Yuan, Yanbin & Ji, Bin & Yuan, Xiaohui & Huang, Yuehua, 2015. "Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 74-89.
    19. Ward Passchyn & Dirk Briskorn & Frits C. R. Spieksma, 2019. "No-Wait Scheduling for Locks," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 413-428, July.
    20. Amirhossein Baghestani & Mohammad Tayarani & Mahdieh Allahviranloo & H. Oliver Gao, 2020. "Evaluating the Traffic and Emissions Impacts of Congestion Pricing in New York City," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    21. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Buchem, Moritz & Golak, Julian Arthur Pawel & Grigoriev, Alexander, 2022. "Vessel velocity decisions in inland waterway transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(2), pages 669-678.
    3. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    4. Golak, Julian Arthur Pawel & Defryn, Christof & Grigoriev, Alexander, 2022. "Optimizing fuel consumption on inland waterway networks: Local search heuristic for lock scheduling," Omega, Elsevier, vol. 109(C).
    5. T. Edward Yu & Bijay P. Sharma & Burton C. English, 2019. "Investigating Lock Delay on the Upper Mississippi River: a Spatial Panel Analysis," Networks and Spatial Economics, Springer, vol. 19(1), pages 275-291, March.
    6. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Passchyn, Ward & Briskorn, Dirk & Spieksma, Frits C.R., 2016. "Mathematical programming models for lock scheduling with an emission objective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 802-814.
    8. Ziyun Wu & Bin Ji & Samson S. Yu, 2024. "Modeling and Solution Algorithm for Green Lock Scheduling Problem on Inland Waterways," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
    9. Zhen, Lu & Wang, Wencheng & Lin, Shumin, 2022. "Analytical comparison on two incentive policies for shore power equipped ships in berthing activities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    11. Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
    12. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    13. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    14. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    15. Ng, ManWo & Lin, Dung-Ying, 2018. "Fleet deployment in liner shipping with incomplete demand information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 184-189.
    16. Alaa Abdelshafie & May Salah & Tomaž Kramberger & Dejan Dragan, 2022. "Repositioning and Optimal Re-Allocation of Empty Containers: A Review of Methods, Models, and Applications," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    17. Qiang Meng & Tingsong Wang & Shuaian Wang, 2015. "Multi-period liner ship fleet planning with dependent uncertain container shipment demand," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 43-67, January.
    18. Wang, Ying & Yeo, Gi-Tae & Ng, Adolf K.Y., 2014. "Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach," Transport Policy, Elsevier, vol. 35(C), pages 358-365.
    19. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    20. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7026-:d:405528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.