IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v109y2022ics0305048321001894.html
   My bibliography  Save this article

Optimizing fuel consumption on inland waterway networks: Local search heuristic for lock scheduling

Author

Listed:
  • Golak, Julian Arthur Pawel
  • Defryn, Christof
  • Grigoriev, Alexander

Abstract

Fuel consumption and CO2 emission are among the main criteria to assess the environmental and economical impact of vessels on inland waterways. Both criteria, however, are directly affected by the vessels’ sailing speed. In this paper, we present a mathematical programming formulation of the speed optimization problem, which aims at minimizing the aggregated fuel consumption on an inland waterway network. The network can consist of multiple river segments, connected by a set of locks, without restrictions on the configuration. To allow scalability towards realistic waterway networks, we also propose a local-search based heuristic to optimize the speed for individual vessels. We evaluate the effectiveness of the heuristic by comparing it to solving the exact mathematical programming formulation. For all computational experiments, we make use of real AIS data from a section of the Dutch river network. We observe that the heuristic is able to construct a high quality solution in realistic problem settings within reasonable amount of computation time.

Suggested Citation

  • Golak, Julian Arthur Pawel & Defryn, Christof & Grigoriev, Alexander, 2022. "Optimizing fuel consumption on inland waterway networks: Local search heuristic for lock scheduling," Omega, Elsevier, vol. 109(C).
  • Handle: RePEc:eee:jomega:v:109:y:2022:i:c:s0305048321001894
    DOI: 10.1016/j.omega.2021.102580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passchyn, Ward & Briskorn, Dirk & Spieksma, Frits C.R., 2016. "Mathematical programming models for lock scheduling with an emission objective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 802-814.
    2. E. R. Petersen & A. J. Taylor, 1988. "An Optimal Scheduling System for the Welland Canal," Transportation Science, INFORMS, vol. 22(3), pages 173-185, August.
    3. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    4. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    5. Douglas Smith, L. & Nauss, Robert M. & Mattfeld, Dirk Christian & Li, Jian & Ehmke, Jan F. & Reindl, M., 2011. "Scheduling operations at system choke points with sequence-dependent delays and processing times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 669-680, September.
    6. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2021. "Solving a stochastic inland waterway port management problem using a parallelized hybrid decomposition algorithm," Omega, Elsevier, vol. 102(C).
    7. Zhen, Lu & Wang, Kai & Wang, Shuaian & Qu, Xiaobo, 2018. "Tug scheduling for hinterland barge transport: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 265(1), pages 119-132.
    8. Defryn, Christof & Golak, Julian Arthur Pawel & Grigoriev, Alexander & Timmermans, Veerle, 2021. "Inland waterway efficiency through skipper collaboration and joint speed optimization," European Journal of Operational Research, Elsevier, vol. 292(1), pages 276-285.
    9. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    10. Alfandari, Laurent & Davidović, Tatjana & Furini, Fabio & Ljubić, Ivana & Maraš, Vladislav & Martin, Sébastien, 2019. "Tighter MIP models for Barge Container Ship Routing," Omega, Elsevier, vol. 82(C), pages 38-54.
    11. Buchem, Moritz & Golak, Julian Arthur Pawel & Grigoriev, Alexander, 2022. "Vessel velocity decisions in inland waterway transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(2), pages 669-678.
    12. Verstichel, J. & De Causmaecker, P. & Spieksma, F.C.R. & Vanden Berghe, G., 2014. "Exact and heuristic methods for placing ships in locks," European Journal of Operational Research, Elsevier, vol. 235(2), pages 387-398.
    13. Ward Passchyn & Dirk Briskorn & Frits C. R. Spieksma, 2019. "No-Wait Scheduling for Locks," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 413-428, July.
    14. Zhongzhen Yang & Haiping Shi & Kang Chen & Hongli Bao, 2014. "Optimization of container liner network on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(1), pages 79-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Buchem, Moritz & Golak, Julian Arthur Pawel & Grigoriev, Alexander, 2022. "Vessel velocity decisions in inland waterway transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(2), pages 669-678.
    3. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    4. Ward Passchyn & Frits C. R. Spieksma, 2019. "Scheduling parallel batching machines in a sequence," Journal of Scheduling, Springer, vol. 22(3), pages 335-357, June.
    5. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Passchyn, Ward & Briskorn, Dirk & Spieksma, Frits C.R., 2016. "Mathematical programming models for lock scheduling with an emission objective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 802-814.
    7. Lijuan Yang & Eldon Y. Li & Yu Zhang, 2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    8. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    9. Nicolas Pinson & Frits C. R. Spieksma, 2019. "Online interval scheduling on two related machines: the power of lookahead," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 224-253, July.
    10. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    11. Fazi, Stefano & Fransoo, Jan C. & Van Woensel, Tom & Dong, Jing-Xin, 2020. "A variant of the split vehicle routing problem with simultaneous deliveries and pickups for inland container shipping in dry-port based systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Fan Bu & Heather Nachtmann, 2023. "Literature review and comparative analysis of inland waterways transport: “Container on Barge”," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 140-173, March.
    13. Ji, Bin & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Fernando, Tyrone & Iu, Herbert H.C., 2019. "Exact and heuristic methods for optimizing lock-quay system in inland waterway," European Journal of Operational Research, Elsevier, vol. 277(2), pages 740-755.
    14. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2021. "Solving a stochastic inland waterway port management problem using a parallelized hybrid decomposition algorithm," Omega, Elsevier, vol. 102(C).
    15. Sweeney, Kevin D. & Sweeney, Donald C. & Campbell, James F., 2019. "The performance of priority dispatching rules in a complex job shop: A study on the Upper Mississippi River," International Journal of Production Economics, Elsevier, vol. 216(C), pages 154-172.
    16. Qiu, Xuan & Xu, Su Xiu & Xu, Gangyan, 2021. "Pricing and scheduling of barge hinterland transportation service for inbound containers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    17. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    18. Shuai Jia & Chung-Lun Li & Zhou Xu, 2019. "Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port," Transportation Science, INFORMS, vol. 53(3), pages 728-745, May.
    19. Deng, Yao & Sheng, Dian & Liu, Baoli, 2021. "Managing ship lock congestion in an inland waterway: A bottleneck model with a service time window," Transport Policy, Elsevier, vol. 112(C), pages 142-161.
    20. Verstichel, J. & De Causmaecker, P. & Spieksma, F.C.R. & Vanden Berghe, G., 2014. "Exact and heuristic methods for placing ships in locks," European Journal of Operational Research, Elsevier, vol. 235(2), pages 387-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:109:y:2022:i:c:s0305048321001894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.