IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5094-d375231.html
   My bibliography  Save this article

Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China

Author

Listed:
  • Liang Qiao

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    Shandong Construction and Development Research Institute, Jinan 250004, China)

  • Doudou Liu

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

  • Xueliang Yuan

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Qingsong Wang

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Qiao Ma

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, Research Center for Sustainable Development, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

Abstract

The output of construction and demolition (C&D) waste in China has been rapidly increasing in the past decades. The direct landfill of such construction and demolition waste without any treatment accounts for about 98%. Therefore, recycling and utilizing this waste is necessary. The prediction of the output of such waste is the basis for waste disposal and resource utilization. This study takes Shandong Province as a case, the current output of C&D waste is analyzed by building area estimation method, and the output of C&D waste in the next few years is also predicted by Mann–Kendall trend test and quadratic exponential smoothing prediction method. Results indicate that the annual productions of C&D waste in Shandong Province demonstrates a significant growth trend with average annual growth of 11.38%. The growth rates of each city differ a lot. The better the city’s economic development, the higher the level of urbanization, the more C&D waste generated. The prediction results suggest that the output of C&D waste in Shandong Province will grow at an average rate of 3.07% in the next few years. By 2025, the amount of C&D waste will reach 141 million tons. These findings can provide basic data support and reference for the management and utilization of C&D waste.

Suggested Citation

  • Liang Qiao & Doudou Liu & Xueliang Yuan & Qingsong Wang & Qiao Ma, 2020. "Generation and Prediction of Construction and Demolition Waste Using Exponential Smoothing Method: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 12(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5094-:d:375231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chika Aoki‐Suzuki & Magnus Bengtsson & Yasuhiko Hotta, 2012. "International Comparison and Suggestions for Capacity Development in Industrializing Countries," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 467-480, August.
    2. Dongoun Lee & Seungho Kim & Sangyong Kim, 2016. "Development of Hybrid Model for Estimating Construction Waste for Multifamily Residential Buildings Using Artificial Neural Networks and Ant Colony Optimization," Sustainability, MDPI, vol. 8(9), pages 1-14, September.
    3. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    4. Florin-Constantin Mihai, 2019. "Construction and Demolition Waste in Romania: The Route from Illegal Dumping to Building Materials," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    5. J W Taylor, 2011. "Multi-item sales forecasting with total and split exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 555-563, March.
    6. Myoung-Jin Um & Jun-Haeng Heo & Momcilo Markus & Donald J. Wuebbles, 2018. "Performance Evaluation of four Statistical Tests for Trend and Non-stationarity and Assessment of Observed and Projected Annual Maximum Precipitation Series in Major United States Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 913-933, February.
    7. Zhikun Ding & Mengjie Shi & Chen Lu & Zezhou Wu & Dan Chong & Wenyan Gong, 2019. "Predicting Renovation Waste Generation Based on Grey System Theory: A Case Study of Shenzhen," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    2. Kien Ton Tong & Ngoc Tan Nguyen & Giang Hoang Nguyen & Tomonori Ishigaki & Ken Kawamoto, 2022. "Management Assessment and Future Projections of Construction and Demolition Waste Generation in Hai Phong City, Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    2. Zhikun Ding & Mengjie Shi & Chen Lu & Zezhou Wu & Dan Chong & Wenyan Gong, 2019. "Predicting Renovation Waste Generation Based on Grey System Theory: A Case Study of Shenzhen," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    3. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    5. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    6. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    7. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    8. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    9. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    10. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    11. Viktor Pirmana & Armida Salsiah Alisjahbana & Rutger Hoekstra & Arnold Tukker, 2019. "Implementation Barriers for a System of Environmental-Economic Accounting in Developing Countries and Its Implications for Monitoring Sustainable Development Goals," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    12. Murat Gunduz & Ayman Fahmi Naser, 2017. "Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects," Sustainability, MDPI, vol. 9(12), pages 1-20, November.
    13. Florin-Constantin Mihai & Ionut Minea, 2021. "Sustainable Alternative Routes versus Linear Economy and Resources Degradation in Eastern Romania," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    14. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    15. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    16. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    17. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    18. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    19. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    20. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5094-:d:375231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.