IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4005-d357716.html
   My bibliography  Save this article

The Business Case for a Journey Planning and Ticketing App—Comparison between a Simulation Analysis and Real-World Data

Author

Listed:
  • Gillian Harrison

    (Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK)

  • Astrid Gühnemann

    (Institute for Transport Studies, University of Natural Resources and Life Sciences (BOKU), Peter Jordan Strasse 82, 1190 Vienna, Austria)

  • Simon Shepherd

    (Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK)

Abstract

Successful development of “Mobility-as-a-Service” (MaaS) schemes could be transformative to our transport systems and critical for achieving sustainable cities. There are high hopes for mobile phone applications that offer both journey planning and ticketing across all the available transport modes, but these are in their infancy, with little understanding of the correct approach to business models and governance. In this study, we develop a system dynamics diffusion model that represents the uptake of such an app, based on one developed and released in West Yorkshire, UK. We perform sensitivity and uncertainty tests on user uptake and app operating profitability, and analyse these in three key areas of marketing, competition, and costs. Comparison to early uptake data is included to demonstrate accuracy of model behaviour and would suggest market failure by month 12 without stronger marketing, even if additional tickets and functions are offered. In response to this, we offer further insights on the need for direct targeted marketing to ensure mass market adoption, the importance of understanding a realistic potential adopter pool, the awareness of competing apps, and the high uncertainty that exists in this market.

Suggested Citation

  • Gillian Harrison & Astrid Gühnemann & Simon Shepherd, 2020. "The Business Case for a Journey Planning and Ticketing App—Comparison between a Simulation Analysis and Real-World Data," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4005-:d:357716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vecchio, Pasquale Del & Secundo, Giustina & Maruccia, Ylenia & Passiante, Giuseppina, 2019. "A system dynamic approach for the smart mobility of people: Implications in the age of big data," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    2. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.
    3. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    4. Ho, Chinh Q. & Mulley, Corinne & Hensher, David A., 2020. "Public preferences for mobility as a service: Insights from stated preference surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 70-90.
    5. Christopher J. Easingwood & Vijay Mahajan & Eitan Muller, 1983. "A Nonuniform Influence Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 2(3), pages 273-295.
    6. Caiati, Valeria & Rasouli, Soora & Timmermans, Harry, 2020. "Bundling, pricing schemes and extra features preferences for mobility as a service: Sequential portfolio choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 123-148.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    9. Storme, Tom & De Vos, Jonas & De Paepe, Leen & Witlox, Frank, 2020. "Limitations to the car-substitution effect of MaaS. Findings from a Belgian pilot study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 196-205.
    10. David Banister & Dominic Stead, 2004. "Impact of information and communications technology on transport," Transport Reviews, Taylor & Francis Journals, vol. 24(5), pages 611-632, January.
    11. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    12. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    13. Laura Gebhardt & Mascha Brost & Alexandra König, 2019. "An Inter- and Transdisciplinary Approach to Developing and Testing a New Sustainable Mobility System," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    2. Gabriele Cepeliauskaite & Benno Keppner & Zivile Simkute & Zaneta Stasiskiene & Leon Leuser & Ieva Kalnina & Nika Kotovica & Jānis Andiņš & Marek Muiste, 2021. "Smart-Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    3. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    2. Kim, Eui-Jin & Kim, Youngseo & Jang, Sunghoon & Kim, Dong-Kyu, 2021. "Tourists’ preference on the combination of travel modes under Mobility-as-a-Service environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 236-255.
    3. Ho, Chinh Q., 2022. "Can MaaS change users’ travel behaviour to deliver commercial and societal outcomes?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 76-97.
    4. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    5. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    6. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
    7. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    8. Dadashzadeh, Nima & Woods, Lee & Ouelhadj, Djamila & Thomopoulos, Nikolas & Kamargianni, Maria & Antoniou, Constantinos, 2022. "Mobility as a Service Inclusion Index (MaaSINI): Evaluation of inclusivity in MaaS systems and policy recommendations," Transport Policy, Elsevier, vol. 127(C), pages 191-202.
    9. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    10. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    11. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    12. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    13. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
    14. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
    15. Paula Brezovec & Nina Hampl, 2021. "Electric Vehicles Ready for Breakthrough in MaaS? Consumer Adoption of E-Car Sharing and E-Scooter Sharing as a Part of Mobility-as-a-Service (MaaS)," Energies, MDPI, vol. 14(4), pages 1-25, February.
    16. Georgina Santos & Nikolay Nikolaev, 2021. "Mobility as a Service and Public Transport: A Rapid Literature Review and the Case of Moovit," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    17. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    18. Zhiyuan Yu & Doudou Jin & Xiaoxiao Song & Chao Zhai & Desheng Wang, 2020. "Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment Solutions for the Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    19. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    20. Lopez-Carreiro, Iria & Monzon, Andres & Lopez, Elena & Lopez-Lambas, Maria Eugenia, 2020. "Urban mobility in the digital era: An exploration of travellers' expectations of MaaS mobile-technologies," Technology in Society, Elsevier, vol. 63(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4005-:d:357716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.