IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1762-d216603.html
   My bibliography  Save this article

Straw Utilization in China—Status and Recommendations

Author

Listed:
  • Jiqin Ren

    (School of Economics and Management, Beijing University of Chemical Technology, 15 East Road of North Third Ring, Beijing 100029, China)

  • Peixian Yu

    (School of Economics and Management, Beijing University of Chemical Technology, 15 East Road of North Third Ring, Beijing 100029, China)

  • Xiaohong Xu

    (Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada)

Abstract

As the world’s largest grain producer, China’s straw yield was 700 million tonnes in 2014. With a national utilization rate of 80% in 2015, there is still a large amount of straw burned in open-field, resulting in air pollution and a reduction in the quantity available as a source of bioenergy. This paper conducts a literature review of success stories and major challenges in comprehensive straw utilization in and out of China. It is noted that nationwide long-term feasible and sustainable straw utilization at a high rate is a highly complex operation, involving most societal sectors, many people and facilities often at different regions. Scenarios were analyzed to estimate the energy potential and air emission reductions China would accomplish in 2020 by converting an additional 5 or 10% of straw-yield to biofuel. Currently, the approach to control straw burning in China is primarily administrative, relying heavily on prohibition and penalties, inconsistent across policy areas and geography, and lacking in long-term planning. Consequently, the effectiveness of the current approach is limited. The main cause of burning is a lack of infrastructure, effective preventive measures, and viable alternatives. Recommendations aimed at promoting a circular bio-economy around using crop straw as resources were provided, including improving straw utilization rates and reducing open-field burning.

Suggested Citation

  • Jiqin Ren & Peixian Yu & Xiaohong Xu, 2019. "Straw Utilization in China—Status and Recommendations," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1762-:d:216603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    2. Rousse, Olivier, 2008. "Environmental and economic benefits resulting from citizens' participation in CO2 emissions trading: An efficient alternative solution to the voluntary compensation of CO2 emissions," Energy Policy, Elsevier, vol. 36(1), pages 388-397, January.
    3. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    4. Littlewood, Jade & Murphy, Richard J. & Wang, Lei, 2013. "Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 291-300.
    5. Wang, Xiaoyu & Yang, Lu & Steinberger, Yosef & Liu, Zuxin & Liao, Shuhua & Xie, Guanghui, 2013. "Field crop residue estimate and availability for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 864-875.
    6. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    7. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    8. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    9. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    10. Hu, Ming-Che & Huang, An-Lei & Wen, Tzai-Hung, 2013. "GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market," Energy, Elsevier, vol. 55(C), pages 354-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You, Chanhee & Han, Seulki & Kim, Jiyong, 2021. "Integrative design of the optimal biorefinery and bioethanol supply chain under the water-energy-food-land (WEFL) nexus framework," Energy, Elsevier, vol. 228(C).
    2. Sun, Yufeng & Wang, Yapeng & Yang, Bin & Zheng, Zipeng & Wang, Chun & Chen, Bo & Li, Suiliang & Ying, Jilai & Liu, Xinping & Chen, Liang & Mu, Wenlong, 2021. "Emergy evaluation of straw collection, transportation and storage system for power generation in China," Energy, Elsevier, vol. 231(C).
    3. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    3. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    4. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    5. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Yong Luo & Dianpeng Chen & Xiaoguo Wang, 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.
    7. Lingling Wang & Tsunemi Watanabe, 2016. "A Stackelberg Game Theoretic Analysis of Incentive Effects under Perceived Risk for China’s Straw-Based Power Plant Supply Chain," Energies, MDPI, vol. 9(6), pages 1-20, June.
    8. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    9. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    10. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    11. Helmer Belbo & Bruce Talbot, 2014. "Performance of small-scale straw-to-heat supply chains in Norway," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 400-407, July.
    12. Yiyun Liu & Rui Zhao & Kuo-Jui Wu & Tao Huang & Anthony S. F. Chiu & Chenyi Cai, 2018. "A Hybrid of Multi-Objective Optimization and System Dynamics Simulation for Straw-to-Electricity Supply Chain Management under the Belt and Road Initiatives," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    13. Li, Yanan & Lin, Jun & Qian, Yanjun & Li, Dehong, 2023. "Feed-in tariff policy for biomass power generation: Incorporating the feedstock acquisition process," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1113-1132.
    14. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    15. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    16. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    17. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    18. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    19. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    20. Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1762-:d:216603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.