IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1265-d209574.html
   My bibliography  Save this article

Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach

Author

Listed:
  • Lihui Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • He Xin

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Zhinan Kan

    (Luneng New Energy (GROUP) CO., LTD, Beijing 102206, China)

Abstract

The hybrid energy system (HES) has attracted more and more attention since it can not only achieve multi-energy supply but realize cascade utilization of energy resources. However, the performances of the HES in relation to economic, environmental, social, and technological aspects are rarely studied. Therefore, this paper tries to fill this research gap to evaluate the sustainability performance of an HES. First, an evaluation criteria system is established based on a literature review. After that, the group analytic hierarchy process (GAHP) technique is used to obtain the importance weights of these criteria. Later, the sustainability performance of the HES is calculated through an improved fuzzy synthetic evaluation (FSE) approach based on a cloud model. The applicability of this approach is demonstrated by a real case study in Zhejiang province, China. Finally, the sensitivity analysis results reveal that the overall consequence is that the performance of an HES is robust when the criteria weight is floating within a certain range (−30–30%), and the comparative analysis with the traditional FSE also reveals that the proposed approach is superior.

Suggested Citation

  • Lihui Zhang & He Xin & Zhinan Kan, 2019. "Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1265-:d:209574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Chen, Kaifeng & Sun, Xiaokun, 2018. "An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: Case study in Zhejiang, China," Energy, Elsevier, vol. 143(C), pages 295-309.
    2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    3. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    4. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    7. Malkawi, Salaheddin & Al-Nimr, Moh'd & Azizi, Danah, 2017. "A multi-criteria optimization analysis for Jordan's energy mix," Energy, Elsevier, vol. 127(C), pages 680-696.
    8. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    9. Peipei You & Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    10. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    11. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    12. Wu, Yunna & Song, Zixin & Li, Lingwenying & Xu, Ruhang, 2018. "Risk management of public-private partnership charging infrastructure projects in China based on a three-dimension framework," Energy, Elsevier, vol. 165(PA), pages 1089-1101.
    13. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    14. Li, Dianhong & Xuan, Yimin & Li, Qiang & Hong, Hui, 2017. "Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems," Energy, Elsevier, vol. 126(C), pages 343-351.
    15. Yunna Wu & Jianli Zhou & Yong Hu & Lingwenying Li & Xiaokun Sun, 2018. "A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China," Energies, MDPI, vol. 11(5), pages 1-27, May.
    16. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    17. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    18. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    19. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    20. Nassereddine, M. & Eskandari, H., 2017. "An integrated MCDM approach to evaluate public transportation systems in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 427-439.
    21. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    22. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.
    23. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, vol. 9(10), pages 1-26, October.
    24. Masoumeh Javadi & Mousa Marzband & Mudathir Funsho Akorede & Radu Godina & Ameena Saad Al-Sumaiti & Edris Pouresmaeil, 2018. "A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market," Energies, MDPI, vol. 11(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molinos-Senante, María & Delgado-Antequera, Laura & Gómez, Trinidad, 2022. "Measuring the quality of service of water companies: A two-stage goal programming synthetic index proposal," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    3. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    4. Yan Lu & Xuan Liu & Yan Zhang & Zhiqiao Yang & Yunna Wu, 2023. "Investment Efficiency Assessment Model for Pumped Storage Power Plants Considering Grid Operation Demand under Fuzzy Environment: A Case Study in China," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    5. Jianxue Chai & Lihui Zhang & Meng Yang & Qingyun Nie & Lei Nie, 2020. "Investigation on the Coupling Coordination Relationship between Electric Power Green Development and Ecological Civilization Construction in China: A Case Study of Beijing," Sustainability, MDPI, vol. 12(21), pages 1-29, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
    2. Wu, Yunna & Ke, Yiming & Xu, Chuanbo & Li, Lingwenying, 2019. "An integrated decision-making model for sustainable photovoltaic module supplier selection based on combined weight and cumulative prospect theory," Energy, Elsevier, vol. 181(C), pages 1235-1251.
    3. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    4. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    5. Md Shafiul Alam & Mohammad Ali Yousef Abido & Alaa El-Din Hussein & Ibrahim El-Amin, 2019. "Fault Ride through Capability Augmentation of a DFIG-Based Wind Integrated VSC-HVDC System with Non-Superconducting Fault Current Limiter," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    6. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
    7. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    8. Abteen Ijadi Maghsoodi & Arta Ijadi Maghsoodi & Amir Mosavi & Timon Rabczuk & Edmundas Kazimieras Zavadskas, 2018. "Renewable Energy Technology Selection Problem Using Integrated H-SWARA-MULTIMOORA Approach," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    9. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    10. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    11. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    12. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    13. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    14. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    15. Xiaokai Meng & Ghulam Muhammad Shaikh, 2023. "Evaluating Environmental, Social, and Governance Criteria and Green Finance Investment Strategies Using Fuzzy AHP and Fuzzy WASPAS," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    16. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    17. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    18. Muhammad Ikram & Qingyu Zhang & Robert Sroufe, 2020. "Developing integrated management systems using an AHP‐Fuzzy VIKOR approach," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2265-2283, September.
    19. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.
    20. Abdulla Alabbasi & Jhuma Sadhukhan & Matthew Leach & Mohammed Sanduk, 2022. "Sustainable Indicators for Integrating Renewable Energy in Bahrain’s Power Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1265-:d:209574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.